×

2-dimensional Kähler-Einstein metrics induced by finite dimensional complex projective spaces. (English) Zbl 1487.32144

Summary: In this paper we give a complete list of non-isometric bidimensional \(S^1\)-invariant Kähler-Einstein submanifolds of a finite dimensional complex projective space endowed with the Fubini-Study metric. This solves in the aforementioned case a classical and long-staying problem addressed among others in [S.-S. Chern, J. Differ. Geom. 1, 21–31 (1967; Zbl 0168.19505); K. Tsukada, Math. Ann. 274, 503–516 (1986; Zbl 0592.53046)].

MSC:

32Q20 Kähler-Einstein manifolds
53C55 Global differential geometry of Hermitian and Kählerian manifolds

References:

[1] Abreu, Miguel. Kähler geometry of toric manifolds in symplectic coordinates.Symplectic and contact topology: interactions and perspectives(Toronto, 2001), 1-24. Fields Inst. Commun., 35.Amer. Math. Soc. Providence, RI,2003.MR1969265,Zbl 1044.53051, arXiv:math/0004122.428 · Zbl 1044.53051
[2] Abreu, Miguel. Kähler geometry of toric varieties and extremal metrics.Internat. J. Math. 9(1998), no. 6, 641-651.MR1644291,Zbl 0932.53043, doi:10.1142/S0129167X98000282. 428 · Zbl 0932.53043
[3] Arezzo, Claudio; Loi, Andrea. A note on Kähler-Einstein metrics and Bochner’s coordinates.Abh. Math. Sem. Univ. Hamburg74(2004), 49-55.MR2112820,Zbl 1067.32019, doi:10.1007/BF02941524.426 · Zbl 1067.32019
[4] Aubin, Thierry. Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics.Springer-Verlag, Berlin,1998. xviii+395 pp. ISBN: 3-540-60752-8. MR1636569,Zbl 0896.53003, doi:10.1007/978-3-662-13006-3.424 · Zbl 0896.53003
[5] Bochner, Salomon. Curvature in Hermitian metric.Bull. Amer. Math. Soc.53(1947), 179-195.MR19983,Zbl 0035.10403, doi:10.1090/S0002-9904-1947-08778-4.420,424 · Zbl 0035.10403
[6] Calabi, Eugenio. Isometric imbedding of complex manifolds.Ann. of Math. (2)58(1953), 1-23.MR57000,Zbl 0051.13103, doi:10.2307/1969817.420,422,424,425,427 · Zbl 0051.13103
[7] Chern, Shiing-shen. Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature.J. Differential Geometry1(1967), no. 1, 21-31.MR219013,Zbl 0168.19505, doi:10.4310/jdg/1214427878.420,421,422 · Zbl 0168.19505
[8] Di Scala, Antonio J.; Loi, Andrea. Kähler maps of Hermitian symmetric spaces into complex space forms.Geom. Dedicata125(2007), 103-113.MR2322543,Zbl 1132.53040, doi:10.1007/s10711-007-9142-z.421 · Zbl 1132.53040
[9] Donaldson, Simon K. Interior estimates for solutions of Abreu’s equation.Collect. Math. 56(2005), no. 2, 103-142.MR2154300,Zbl 1085.53063.428 · Zbl 1085.53063
[10] Donaldson, Simon K. Extremal metrics on toric surfaces:a continuity method. J. Differential Geom.79(2008),no. 3,389-432.MR2433928,Zbl 1151.53030, doi:10.4310/jdg/1213798183.428 · Zbl 1151.53030
[11] Hano, Jun-ichi. Einstein complete intersections in complex projective space.Math. Ann. 216(1975), no. 3, 197-208.MR0382704,Zbl 0306.53047, doi:10.1007/BF01430959.421 · Zbl 0306.53047
[12] Hao, Yihong; Wang, An; Zhang, Liyou. On holomorphic isometric immersions of nonhomogeneous Kähler-Einstein manifolds into the infinite dimensional complex projective space.J. Math Anal. Appl.423(2015), no. 1, 547-560.MR3273194,Zbl 1304.32014, doi:10.1016/j.jmaa.2014.09.080.421 · Zbl 1304.32014
[13] Hulin,Dominique.Sous-variétéscomplexesd’Einsteindel’espaceprojectif. Bull. Soc. Math. France124(1996), no. 2, 277-298.MR1414540,Zbl 0859.53029, doi:10.24033/bsmf.2281.421,424,426 · Zbl 0859.53029
[14] Hulin, Dominique. Kähler-Einstein metrics and projective embeddings.J. Geom. Anal. 10(2000), no. 3, 525-528.MR1794575,Zbl 1057.53032, doi:10.1007/BF02921947.421,424, 426 · Zbl 1057.53032
[15] Kobayashi, Shoshichi. Compact Kaehler manifolds with positive Ricci tensor.Bull. Amer. Math. Soc.67(1961), 412-413.MR130660,Zbl 0109.40502, doi:/10.1090/S0002-99041961-10648-4.427 · Zbl 0109.40502
[16] Loi, Andrea; Salis, Filippo; Zuddas, Fabio. Two conjectures on Ricci-flat Kähler metrics.Math. Z.290(2018), 599-613.MR3848448,Zbl 1412.53104, doi:10.1007/s00209-0172033-6.421 · Zbl 1412.53104
[17] Loi, Andrea; Salis, Filippo; Zuddas, Fabio. Extremal Kähler metrics induced by finite or infinite-dimensional complex space forms.J. Geom. Anal.31(2021), no. 8, 7842-7865. MR4293915,Zbl 7388772,arXiv:2006.02101, doi:10.1007/s12220-020-00554-4.421,422 · Zbl 1483.53088
[18] Loi, Andrea; Zedda, Michela. Kähler-Einstein submanifolds of the infinite dimensional projective space.Math. Ann.350(2011), no. 1, 145-154.MR2785765,Zbl 1222.53075, arXiv:0811.0674, doi:10.1007/s00208-010-0554-y.421 · Zbl 1222.53075
[19] Loi, Andrea; Zedda, Michela. Kähler immersions of Kähler manifolds into complex space forms. Lecture notes of the Unione Matematica Italiana, 23.Springer, Cham; Unione Matematica Italiana,(Bologna), 2018. x+99 pp. ISBN: 978-3-319-99482-6; 978-3-319-994833.MR3838438,Zbl 1432.32032,arXiv:1712.04298,doi:10.1007/978-3-319-99483-3.421,422 · Zbl 1432.32032
[20] Loi, Andrea; Zedda, Michela; Zuddas, Filippo. Ricci flat Calabi’s metric is not projectively induced.Tohoku Math. J. (2)73(2021), no. 1, 29-37.MR4255094,Zbl 7411160, arXiv:1912.05223, doi:10.2748/tmj.20191211.421 · Zbl 1480.53083
[21] Moroianu, Andrei. Lectures on Kähler Geometry. London Mathematical Society Student Texts, 69.Cambridge University Press, Cambridge, 2007. x+171 pp. ISBN: 978-0-521-68897-0. MR2325093,Zbl 1119.53048,arXiv:math/0402223, doi:10.1017/CBO9780511618666.426 · Zbl 1119.53048
[22] Nomizu, Katsumi. On local and global existence of Killing vector fields.Ann. of Math. (2) 72(1960), 105-120.MR119172,Zbl 0093.35103, doi:10.2307/1970148.427 · Zbl 0093.35103
[23] Oda, Tadao. Convex bodies and algebraic geometry. An introduction to the theory of toric varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete, 15.Springer-Verlag, Berlin, 1988. viii+212 pp. ISBN: 3-540-17600-4.MR0922894,Zbl 0628.52002.423 · Zbl 0628.52002
[24] Ruan, Wei-Dong. Canonical coordinates and Bergmann metrics.Comm. Anal. Geom.6 (1998), no. 3, 589-631.MR1638878,Zbl 0917.53026, doi:10.4310/CAG.1998.v6.n3.a5.424 · Zbl 0917.53026
[25] Salis, Filippo. Projectively induced rotation invariant Kähler metrics.Arch. Math. (Basel)109(2017), no. 3, 285-292.MR3687872,Zbl 1380.53085,arXiv:1607.07177, doi:10.1007/s00013-017-1055-y.422,426 · Zbl 1380.53085
[26] Siu, Yum Tong. The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group.Ann. of Math. (2)127(1988), no. 3, 585-627.MR942521,Zbl 0651.53035, doi:10.2307/2007006.423 · Zbl 0651.53035
[27] Smyth, Brian. Differential geometry of complex hypersurfaces.Ann. of Math. (2)85 (1967), 246-266.MR206881,Zbl 0168.19601, doi:10.2307/1970441.421,422 · Zbl 0168.19601
[28] Takeuchi, Masaru. Homogeneous Kähler submanifolds in complex projective spaces. Japan. J. Math. (N.S.)4(1978), no. 1, 171-219.MR528871,Zbl 0389.53027.421 · Zbl 0389.53027
[29] Tian, Gang. On Calabi’s conjecture for complex surfaces with positive first Chern class.Invent. Math.101(1990),no. 1,101-172.MR1055713,Zbl 0716.32019, doi:10.1007/BF01231499.423 · Zbl 0716.32019
[30] Tian, Gang. On a set of polarized Kähler metrics on algebraic manifolds.J. Differential Geom.32(1990), no. 1, 99-130.MR1064867,Zbl 0706.53036, doi:10.4310/jdg/1214445039. 424 · Zbl 0706.53036
[31] Tsukada, Kazumi. Einstein Kähler submanifolds with codimension2in a complex space form.Math. Ann.274(1986), no. 3, 503-516.MR842628,Zbl 0592.53046, doi:10.1007/BF01457231.420,421,422 · Zbl 0592.53046
[32] Umehara, Masaaki. Einstein Kähler submanifolds of a complex linear or hyperbolic space.Tohoku Math. J. (2)39(1987), no. 3, 385-389.MR902577,Zbl 0648.53031, doi:10.2748/tmj/1178228285 · Zbl 0648.53031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.