×

Simplicial affine semigroups with monomial minimal reduction ideals. (English) Zbl 1487.13048

Let \(K\) be a field and \(K[x_1, x_2, \ldots, x_d]\) be the polynomial ring of dimension \(d\). If \(S\) is a sub-semigroup of \(\mathbb N^d\), then the subring \(R=K[S]\), called the semigroup ring of \(S,\) is generated over \(K\) by the monomials \(x^a\) where \(a\in S.\) Let \(\dim K[S]=d\) and \(S\) be simplicial. This means when the cone over \(S\), denoted as \(\text{cone}(S)\), has \(d\) extremal rays. Let \(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_d \) be the extremal rays of \(S\) and \(S=(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_d , \mathbf{a}_{d+1}, \ldots, \mathbf{a}_{d+s}).\) The grading on \(K[S]\) is the one induced from that of the standard grading on \(R.\) It is proved that if \(K\) is infinite then \((x^{a_1}, x^{a_2}, \ldots, x^{a_d})\) is the unique monomial reduction of the maximal homogeneous ideal \(\mathfrak m\) of \(K[S].\) The Apery set of \(S\) with respect to \(b\in S\) is defined to be The set \(Ap(S, b)=\{ a\in S\mid a-b\not\in S\}.\) Put \(A(S, E)=\cap_{j=1}^d Ap(S, a_j).\) Consider the conditions: (1) \(e(R)=|Ap(S, E)|,\) (2) \(\{x^{a_1}, \ldots, x^{a_d}\}\) is a minimal reduction of the maximal homogeneous ideal \(\mathfrak m\) of \(K[S]\) (3) \(R\) is Cohen-Macaulay. It is proved that any two of \((1), (2), (3)\) imply the remaining condition. Several concrete conditions are provided for the Cohen-Macaulay and Gorenstein property of \(R\) and its associated graded ring with respect to its maximal homogeneous ideal using the Apery sets.

MSC:

13H15 Multiplicity theory and related topics
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
05E40 Combinatorial aspects of commutative algebra
20M25 Semigroup rings, multiplicative semigroups of rings

References:

[1] Abhyankar, SS, Local rings of high embedding dimension, Am. J. Math., 89, 1073-1077 (1967) · Zbl 0159.33202 · doi:10.2307/2373418
[2] Beck, M.; Robins, S., Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics (2015), Berlin: Springer, Berlin · Zbl 1339.52002
[3] Briales, E., Campillo, A., Pisón, P., Vigneron, A.: Simplicial complexes and syzygies of lattice ideals. In: Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering (South Hadley, MA, 2000), Contemporary in Mathemtaics, 286, pp. 169-183. American Mathematical Society, Providence, RI · Zbl 1093.13507
[4] Bruns, W.; Herzog, J., Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39 (1993), Cambridge: Cambridge University Press, Cambridge · Zbl 0788.13005
[5] Bruns, W.; Gubeladze, J.; Trung, NV, Problems and algorithms for affine semigroups, Semigroup Forum, 64, 2, 180-212 (2002) · Zbl 1018.20048 · doi:10.1007/s002330010099
[6] Bryant, L., Goto numbers of a numerical semigroup ring and the Gorensteiness of associated graded rings, Commun. Algebra, 38, 2092-2128 (2010) · Zbl 1203.13004 · doi:10.1080/00927870903025993
[7] García, A., Cohen-Macaulayness of the associated graded of a semigroup ring, Commun. Algebra, 10, 393-415 (1982) · Zbl 0495.20036 · doi:10.1080/00927878208822724
[8] Goto, S.; Suzuki, N.; Watanabe, K., On affine semigroup rings, Jpn. J. Math. (N.S.), 2, 1, 1-12 (1976) · Zbl 0361.20066 · doi:10.4099/math1924.2.1
[9] Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. https://www.faculty.math.illinois.edu/Macaulay2/
[10] Herzog, J., Generators and relations of abelian semigroups and semigroup rings, Manuscr. Math., 3, 175-193 (1970) · Zbl 0211.33801 · doi:10.1007/BF01273309
[11] Hoa, LT; Stückrad, J., Castelnuovo-Mumford regularity of simplicial toric rings, J. Algebra, 259, 1, 127-146 (2003) · Zbl 1080.13504 · doi:10.1016/S0021-8693(02)00541-0
[12] Jafari, R.; Zarzuela Armengou, S., On monomial curves obtained by gluing, Semigroup Forum, 88, 397-416 (2014) · Zbl 1315.13039 · doi:10.1007/s00233-013-9536-1
[13] Matsumura, H., Commutative Ring Theory, Translated from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8 (1986), Cambridge: Cambridge University Press, Cambridge · Zbl 0603.13001
[14] Ojeda, I.; Vigneron-Tenorio, A., The short resolution of a semigroup algebra, Bull. Aust. Math. Soc., 96, 3, 400-411 (2017) · Zbl 1373.13015 · doi:10.1017/S0004972717000612
[15] Rosales, JC; García-Sánchez, PA, On Cohen-Macaulay and Gorenstein simplicial affine semigroups, Proc. Edinb. Math. Soc. (2), 41, 3, 517-537 (1998) · Zbl 0904.20048 · doi:10.1017/S0013091500019866
[16] Rosales, JC; García-Sánchez, PA, Finitely Generated Commutative Monoids (1999), Commack: Nova Science Publishers Inc, Commack · Zbl 0966.20028
[17] Sturmfels, B., Gröbner Bases and Convex Polytopes, University Lecture Series, 8 (1996), Providence: American Mathematical Society, Providence · Zbl 0856.13020
[18] Swanson, I.; Huneke, C., Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series, 336 (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1117.13001
[19] Trung, NV, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Am. Math. Soc., 101, 229-236 (1987) · Zbl 0641.13016 · doi:10.1090/S0002-9939-1987-0902533-1
[20] Valabrega, P.; Valla, G., Form rings and regular sequences, Nagoya Math. J., 72, 93-101 (1978) · Zbl 0362.13007 · doi:10.1017/S0027763000018225
[21] Vasconcelos, WV, The reduction number of an algebra, Compos. Math., 104, 189-197 (1996) · Zbl 0867.13001
[22] Verma, J.K.: Hilbert coefficients and depth of the associated graded ring of an ideal, The Mathematics Student, The Special Centenary Volume, pp. 205-228. arXiv:0801.4866 (2007) · Zbl 1173.13316
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.