×

Contorsion of material connection in growing solids. (English) Zbl 1486.74008

Summary: The subject of the present paper is a material connection that describes the sources of incompatibility in growing solids. There are several possibilities to introduce such a connection on the body manifold, which provides formal description of a body as a continuous collection of material particles. Two of them are discussed in detail. The first sets the geometry of Riemannian manifold, while the second sets Weitzenböck geometry. To derive particular connection functions, related with given evolutionary problem for growing solid, one has to use some intermediate configurations, whose choice is also uncertain. The purpose of this study is to find out how the ambiguity affects on the stress-strain state modelling. The main results are the following. It is proven that the geometrical invariants of considered material connections, namely the invariants of torsion and curvature, are independent on particular choice of intermediate configuration. It is shown that Weitzenböck connection contains all metric information that completely defines Riemannian ones, but, except it, provides additional description for contorsion, which characterizes inhomogeneity by specific term in balance of momentum. Thus, the two connections do not contradict each other. To describe the body’s response to deformation it is sufficient to construct more simpler Riemannian connection, while to completely describe balance laws it is advisable to obtain more complete Weitzenböck connection.

MSC:

74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
53Z05 Applications of differential geometry to physics
Full Text: DOI

References:

[1] Epstein, M.; Elzanowski, M., Material Inhomogeneities and Their Evolution: A Geometric Approach (2007), New York: Springer Science, New York · Zbl 1130.74001
[2] Kanso, E.; Arroyo, M.; Tong, Y.; Yavari, A.; Marsden, J.; Desbrun, M., On the geometric character of stress in continuum mechanics, Z. Angew. Math. Phys., 58, 843-856 (2007) · Zbl 1126.74003 · doi:10.1007/s00033-007-6141-8
[3] Kupferman, R.; Olami, E.; Segev, R., Continuum dynamics on manifolds: Application to elasticity of residually-stressed bodies, J. Elast., 128, 61-84 (2017) · Zbl 1373.74008 · doi:10.1007/s10659-016-9617-y
[4] Sozio, F.; Yavari, A., Riemannian and Euclidean material structures in anelasticity, Math. Mech. Solids, 25, 1267-1293 (2020) · Zbl 1482.74009 · doi:10.1177/1081286519884719
[5] Kondo, K., Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry (1955), Tokyo: Gakujutsu Bunken Fukyo-Kai, Tokyo · Zbl 0068.14803
[6] Kondo, K., Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry (1955), Tokyo: Gakujutsu Bunken Fukyo-Kai, Tokyo · Zbl 0068.14803
[7] Bilby, B.; Bullough, R.; Smith, E., Continuous distributions of dislocations: A new application of the methods of non-Riemannian geometry, Proc. R. Soc. London, Ser. A, 231, 263-273 (1955) · doi:10.1098/rspa.1955.0171
[8] Kröner, E., Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Ration. Mech. Anal., 4, 18-334 (1959) · Zbl 0090.17601 · doi:10.1007/BF00281393
[9] Noll, W., Materially uniform simple bodies with inhomogeneities, Arch. Ration. Mech. Anal., 27, 1-32 (1967) · Zbl 0168.45701 · doi:10.1007/BF00276433
[10] Miri, M.; Rivier, N., Continuum elasticity with topological defects, including dislocations and extra-matter, J. Phys. A: Math. Gen., 35, 1727-1739 (2002) · Zbl 1035.74006 · doi:10.1088/0305-4470/35/7/317
[11] Yavari, A.; Goriely, A., Riemann-Cartan geometry of nonlinear dislocation mechanics, Arch. Ration. Mech. Anal., 205, 59-118 (2012) · Zbl 1281.74006 · doi:10.1007/s00205-012-0500-0
[12] Yavari, A.; Goriely, A., Weyl geometry and the nonlinear mechanics of distributed point defects, Proc. R. Soc. London, Ser. A, 468, 3902-3922 (2012) · Zbl 1371.74046 · doi:10.1098/rspa.2012.0342
[13] Yavari, A., A geometric theory of growth mechanics, J. Nonlin. Sci., 20, 781-830 (2010) · Zbl 1428.74157 · doi:10.1007/s00332-010-9073-y
[14] Sozio, F.; Yavari, A., Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies, J. Mech. Phys. Solids, 98, 12-48 (2017) · Zbl 1482.74023 · doi:10.1016/j.jmps.2016.08.012
[15] Sozio, F.; Yavari, A., Nonlinear mechanics of accretion, J. Nonlin. Sci., 29, 1813-1863 (2019) · Zbl 1425.74089 · doi:10.1007/s00332-019-09531-w
[16] Rudolph, G.; Schmidt, M., Differential Geometry and Mathematical Physics. Part I. Manifolds, Lie Groups and Hamiltonian Systems (2013), Dordrecht: Springer Science, Dordrecht · Zbl 1259.53003 · doi:10.1007/978-94-007-5345-7
[17] Rudolph, G.; Schmidt, M., Differential Geometry and Mathematical Physics. Part II. Fibre Bundles, Topology and Gauge Fields (2017), Dordrecht: Springer Science, Dordrecht · Zbl 1364.53001 · doi:10.1007/978-94-024-0959-8
[18] Lee, J. M., Introduction to Smooth Manifolds (2012), New York: Springer, New York · Zbl 1258.53002 · doi:10.1007/978-1-4419-9982-5
[19] Lychev, S. A.; Koifman, K. G., Material affine connections for growing solids, Lobachevskii J. Math., 41, 2034-2052 (2020) · Zbl 1462.53098 · doi:10.1134/s1995080220100121
[20] Lychev, S.; Koifman, K., Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics (2018), Berlin: De Gruyter, Berlin · Zbl 1526.74002 · doi:10.1515/9783110563214
[21] Lee, J. M., Introduction to Riemannian Manifolds (2018), Cham: Springer, Cham · Zbl 1409.53001 · doi:10.1007/978-3-319-91755-9
[22] Postnikov, M. M., Lectures in Geometry: Smooth Manifolds, Semester 3 (1994), Moscow: URSS, Moscow · Zbl 0845.53001
[23] Hirsch, M. W., Differential Topology (2012), New York: Springer Science, New York
[24] Nash, J., Ann. Math., 60, 383-396 (1954) · Zbl 0058.37703 · doi:10.2307/1969840
[25] Lychev, S.; Koifman, K., Nonlinear evolutionary problem for a laminated inhomogeneous spherical shell, Acta Mech., 230, 3989-4020 (2019) · Zbl 1431.74077 · doi:10.1007/s00707-019-02399-7
[26] Yang, W. H.; Feng, W. W., On axisymmetrical deformations of nonlinear membranes, J. Appl. Mech., 37, 1002-1011 (1970) · Zbl 0222.73102 · doi:10.1115/1.3408651
[27] Weyl, H., Space, Time (1952), Dover, New York: Matter, Dover, New York
[28] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Butterworth-Heinemann, New York, 1976).
[29] Schield, R. T., Inverse deformation results in finite elasticity, Zeitschr. Angew. Math. Phys., 18, 490-500 (1967) · Zbl 0146.46103 · doi:10.1007/bf01601719
[30] Chern, S.; Chen, W.; Lam, K., Lectures on Differential Geometry (1999), Singapore: World Scientific, Singapore · Zbl 0940.53001 · doi:10.1142/3812
[31] Maugin, G. A., Material Inhomogeneities in Elasticity (1993), Boca Raton, FL: CRC, Boca Raton, FL · Zbl 0797.73001 · doi:10.1007/978-1-4899-4481-8
[32] Mac Lane, S., Categories for the Working Mathematician (1978), New York: Springer, New York · Zbl 0232.18001 · doi:10.1007/978-1-4757-4721-8
[33] Lychev, S. A.; Manzhirov, A. V., The mathematical theory of growing bodies. Finite deformations, J. Appl. Math. Mech., 77, 421-432 (2013) · Zbl 1432.74008 · doi:10.1016/j.jappmathmech.2013.11.011
[34] Lee, J. M., Introduction to Topological Manifolds (2011), New York: Springer, New York · Zbl 1209.57001 · doi:10.1007/978-1-4419-7940-7
[35] Levi-Civita, T., Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana, Rend. Circ. Mat. Palermo, 42, 173-204 (1916) · doi:10.1007/BF03014898
[36] Cartan, E. J., Sur les variétés á connexion affine et la théorie de la relativité généralisée, Ann. Sci. Ecole Norm. Super., 40, 325-412 (1923) · JFM 49.0625.02 · doi:10.24033/asens.751
[37] O. E. Fernandez and A. M. Bloch, ‘‘The Weitzenböck connection and time reparameterization in nonholonomic mechanics,’’ J. Math. Phys. 52, 012901 (2011). https://doi.org/10.1063/1.3525798 · Zbl 1314.70017
[38] Truesdell, C.; Noll, W., The Non-Linear Field Theories of Mechanics (2004), New York: Springer Science, New York · Zbl 1068.74002 · doi:10.1007/978-3-662-10388-3
[39] Marsden, J. E.; Hughes, T. J., Mathematical Foundations of Elasticity (1994), North Chelmsford, MA: Courier, North Chelmsford, MA · Zbl 0545.73031
[40] Lee, E. H., Elastic-plastic deformation at finite strain, J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603 · doi:10.1115/1.3564580
[41] C. Goodbrake, A. Goriely, and A. Yavari, ‘‘The mathematical foundations of anelasticity: Existence of smooth global intermediate configurations,’’ Proc. R. Soc. London, Ser. A 477, 20200462 (2021). https://doi.org/10.1098/rspa.2020.0462
[42] F. J. Belinfante, ‘‘On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields,’’ Physica (Amsterdam, Neth.) 7, 449-474 (1940). · JFM 66.1143.01
[43] Rosenfeld, L., Sur le tenseur D’Impulsion-Energie, Acad. R. Belg. Cl. Sci., 18, 1-30 (1940) · JFM 66.1142.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.