×

The Dirichlet problem on compact convex sets. (English) Zbl 1486.46007

The following is a rather faithful summary of the Introduction.
Let \(X\) be a compact convex set in a locally convex Hausdorff space and \(\operatorname{ext} X\) the set of all extreme points of \(X\). The Dirichlet problem asks to extend a function \(f\) defined on \(\operatorname{ext} X\) to an affine function \(h\) on \(X\). If \(h\) exists, it is desirable that it preserves as many properties of \(f\) as possible. The existence of an affine continuous extension was characterized in [E. M. Alfsen, Compact convex sets and boundary integrals. Springer-Verlag, Berlin (1971; Zbl 0209.42601), Theorem II.4.5]. For functions of higher Baire classes, a necessary and sufficient condition was presented in [J. Spurný, Isr. J. Math. 173, 403–419 (2009; Zbl 1190.46009), Theorem 3.3].
In this paper the authors generalize these results to the context of vector-valued Baire functions and eliminate the assumption on envelopes which was essential in the above mentioned papers. The main result asserts that, under some mild topological assumption imposed on the set \(\operatorname{ext} X\), a bounded Baire function \(f\) defined on \(\operatorname{ext} X\) is extendable to a so-called strongly affine Baire mapping on \(X\) if and only if \(f\) is annihilated by any boundary measure perpendicular to the space of affine continuous real functions on \(X\). It is easy to see that the condition is necessary and thus the most important part of the proof is concerned with the sufficiency. Four examples witness the sharpness of the results.

MSC:

46A55 Convex sets in topological linear spaces; Choquet theory
26A21 Classification of real functions; Baire classification of sets and functions
54H05 Descriptive set theory (topological aspects of Borel, analytic, projective, etc. sets)
Full Text: DOI

References:

[1] Alfsen, E., Compact Convex Sets and Boundary Integrals, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 57 (1971), Springer-Verlag: Springer-Verlag New York · Zbl 0209.42601
[2] Alfsen, E. M., On the Dirichlet problem of the Choquet boundary, Acta Math., 120, 149-159 (1968) · Zbl 0165.15903
[3] Casazza, P. G., Approximation properties, (Handbook of the Geometry of Banach Spaces, Vol. I (2001), North-Holland: North-Holland Amsterdam), 271-316 · Zbl 1067.46025
[4] Effros, E. G., Structure in simplexes. II, J. Funct. Anal., 1, 379-391 (1967) · Zbl 0179.17302
[5] Fabian, M.; Habala, P.; Hájek, P.; Montesinos, V.; Zizler, V., Banach space theory, (The Basis for Linear and Nonlinear Analysis. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (2011), Springer: Springer New York) · Zbl 1229.46001
[6] Fremlin, D. H., Measure theory, vol. 4, (Topological Measure Spaces. Part I, II (2006), Torres Fremlin: Torres Fremlin Colchester), Corrected second printing of the 2003 original · Zbl 1165.28001
[7] Jellett, F., On affine extensions of continuous functions defined on the extreme boundary of a Choquet simplex, Q. J. Math. Oxf. Ser. (1), 36, 71-73 (1985) · Zbl 0582.46010
[8] Kalenda, O. F.K.; Spurný, J., Extending Baire-one functions on topological spaces, Topol. Appl., 149, 195-216 (2005) · Zbl 1075.54011
[9] Kalenda, O. F.K.; Spurný, J., Baire classes of affine vector-valued functions, Stud. Math., 233, 227-277 (2016) · Zbl 1367.46016
[10] Kačena, M.; Spurný, J., Affine Baire functions on Choquet simplices, Cent. Eur. J. Math., 9, 127-138 (2011) · Zbl 1219.46010
[11] Lacey, H., The Isometric Theory of Classical Banach Spaces, Die Grundlehren der Mathematischen Wissenschaften, Band 208 (1974), Springer-Verlag: Springer-Verlag New York · Zbl 0285.46024
[12] Lazar, A. J., Affine products of simplexes, Math. Scand., 22, 165-175 (1968), (1969) · Zbl 0176.42803
[13] Ludvík, P.; Spurný, J., Descriptive properties of elements of biduals of Banach spaces, Stud. Math., 209, 71-99 (2012) · Zbl 1364.46011
[14] Lukeš, J.; Malý, J.; Netuka, I.; Spurný, J., Integral representation theory, (Applications to Convexity, Banach Spaces and Potential Theory. Applications to Convexity, Banach Spaces and Potential Theory, de Gruyter Studies in Mathematics, vol. 35 (2010), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin) · Zbl 1216.46003
[15] Phelps, R. R., Lectures on Choquet’s Theorem, Lecture Notes in Mathematics, vol. 1757 (2001), Springer-Verlag: Springer-Verlag Berlin · Zbl 0997.46005
[16] Rogalski, M., Opérateurs de Lion, projecteurs boéliens et simplexes analytiques, J. Funct. Anal., 2, 458-488 (1968) · Zbl 0164.43403
[17] Rogers, C. A.; Jayne, J. E., K-analytic sets, (Analytic Sets (1980), Academic Press Inc. [Harcourt Brace Jovanovich Publishers]: Academic Press Inc. [Harcourt Brace Jovanovich Publishers] London), 1-181
[18] Rudin, W., Functional Analysis, International Series in Pure and Applied Mathematics (1991), McGraw-Hill, Inc.: McGraw-Hill, Inc. New York · Zbl 0867.46001
[19] Saint-Raymond, J., Fonctions convexes de première classe, Math. Scand., 54, 121-129 (1984) · Zbl 0599.46012
[20] Spurný, J., On the Dirichlet problem of extreme points for non-continuous functions, Isr. J. Math., 173, 403-419 (2009) · Zbl 1190.46009
[21] Spurný, J., Borel sets and functions in topological spaces, Acta Math. Hung., 129, 47-69 (2010) · Zbl 1274.54100
[22] Spurný, J., Descriptive properties of vector-valued affine functions, Stud. Math., 246, 233-256 (2019) · Zbl 1434.46002
[23] Talagrand, M., A new type of affine Borel function, Math. Scand., 54, 183-188 (1984) · Zbl 0562.46005
[24] Veselý, L., Characterization of Baire-one functions between topological spaces, Acta Univ. Carol., Math. Phys., 33, 143-156 (1992) · Zbl 0792.54028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.