×

Existence, comparison, and convergence results for a class of elliptic hemivariational inequalities. (English) Zbl 1486.35147

Summary: In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function. First, we prove a new existence result for the inequality employing the theory of pseudomonotone operators. Next, we give a result on comparison of solutions, and provide sufficient conditions that guarantee the asymptotic behavior of solution, when the heat transfer coefficient tends to infinity. Further, we show a result on the continuous dependence of solution on the internal energy and heat flux. Finally, some examples of convex and nonconvex potentials illustrate our hypotheses.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J65 Nonlinear boundary value problems for linear elliptic equations
35J87 Unilateral problems for nonlinear elliptic equations and variational inequalities with nonlinear elliptic operators
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Azzam, A.; Kreyszig, E., On solutions of elliptic equations satisfying mixed boundary conditions, SIAM J. Math. Anal., 13, 254-262 (1982) · Zbl 0485.35041 · doi:10.1137/0513018
[2] Bacuta, C.; Bramble, JH; Pasciak, JE, Using finite element tools in proving shift theorems for elliptic boundary value problems, Numer. Linear Algebra Appl., 10, 33-64 (2003) · Zbl 1071.65559 · doi:10.1002/nla.311
[3] Barbu, V., Boundary control problems with non linear state equation, SIAM J. Control Optim., 20, 125-143 (1982) · Zbl 0493.49024 · doi:10.1137/0320010
[4] Boukrouche, M.; Tarzia, DA; Hömberg, D.; Tröltzsch, F., On existence, uniqueness, and convergence of optimal control problems governed by parabolic variational inequalities, IFIP Advances in Information and Communication Technology 391, 76-84 (2013), Berlin: Springer, Berlin · Zbl 1266.49010
[5] Carl, S.; Le, VK; Motreanu, D., Nonsmooth Variational Problems and Their Inequalities (2007), New York: Springer, New York · Zbl 1109.35004 · doi:10.1007/978-0-387-46252-3
[6] Clarke, FH, Optimization and Nonsmooth Analysis (1983), New York: Wiley Interscience, New York · Zbl 0582.49001
[7] Denkowski, Z.; Migorski, S.; Papageorgiou, NS, An Introduction to Nonlinear Analysis: Theory (2003), Boston: Kluwer Academic, Boston · Zbl 1040.46001 · doi:10.1007/978-1-4419-9158-4
[8] Denkowski, Z.; Migorski, S.; Papageorgiou, NS, An Introduction to Nonlinear Analysis: Applications (2003), Boston: Kluwer Academic, Boston · Zbl 1054.47001 · doi:10.1007/978-1-4419-9156-0
[9] Duvaut, G.; Lions, JL, Les Inéquations en Mécanique et en Physique (1972), Paris: Dunod, Paris · Zbl 0298.73001
[10] Garguichevich, GG; Tarzia, DA, The steady-state two-fase Stefan problem with an internal energy and some related problems, Atti Sem. Mat. Fis. Univ. Modena, 39, 615-634 (1991) · Zbl 0752.35091
[11] Gasinski, L.; Liu, Z.; Migorski, S.; Ochal, A.; Peng, Z., Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, J. Optim. Theory Appl., 164, 514-533 (2015) · Zbl 1440.47048 · doi:10.1007/s10957-014-0587-6
[12] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), London: Pitman, London · Zbl 0695.35060
[13] Kawohl, B., On nonlinear parabolic equations with abruptly changing nonlinear boundary conditions, Nonlinear Anal., 5, 1141-1153 (1981) · Zbl 0468.35050 · doi:10.1016/0362-546X(81)90008-0
[14] Lanzani, L.; Capagna, L.; Brown, RM, The mixed problem in \(L^p\) for some two-dimensional Lipschitz domain, Math. Ann., 342, 91-124 (2008) · Zbl 1180.35203 · doi:10.1007/s00208-008-0223-6
[15] Migorski, S.; Ochal, A., Boundary hemivariational inequality of parabolic type, Nonlinear Anal., 57, 579-596 (2004) · Zbl 1050.35043 · doi:10.1016/j.na.2004.03.004
[16] Migorski, S.; Ochal, A., A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity, 83, 247-275 (2006) · Zbl 1138.74375 · doi:10.1007/s10659-005-9034-0
[17] Migorski, S.; Ochal, A.; Sofonea, M., Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problems (2013), New York: Springer, New York · Zbl 1262.49001
[18] Migorski, S.; Ochal, A.; Sofonea, M., A class of variational-hemivariational inequalities in reflexive Banach spaces, J. Elasticity, 127, 151-178 (2017) · Zbl 1368.47045 · doi:10.1007/s10659-016-9600-7
[19] Naniewicz, Z.; Panagiotopoulos, PD, Mathematical Theory of Hemivariational Inequalities and Applications (1995), New York: Marcel Dekker Inc., New York · Zbl 0968.49008
[20] Panagiotopoulos, PD, Nonconvex problems of semipermeable media and related topics, Z. Angew. Math. Mech., 65, 29-36 (1985) · Zbl 0583.34019 · doi:10.1002/zamm.19850650116
[21] Panagiotopoulos, PD, Inequality Problems in Mechanics and Applications (1985), Boston: Birkhäuser, Boston · Zbl 0579.73014 · doi:10.1007/978-1-4612-5152-1
[22] Panagiotopoulos, PD, Hemivariational Inequalities (1993), Berlin: Springer, Berlin · Zbl 0826.73002 · doi:10.1007/978-3-642-51677-1
[23] Rodrigues, JF, Obstacle Problems in Mathematical Physics (1987), Amsterdam: North-Holland, Amsterdam · Zbl 0606.73017
[24] Shillor, M.; Sofonea, M.; Telega, JJ, Models and Analysis of Quasistatic Contact (2004), Berlin: Springer, Berlin · Zbl 1069.74001 · doi:10.1007/b99799
[25] Sofonea, M.; Migorski, S., Variational-Hemivariational Inequalities with Applications (2018), Boca Raton: CRC Press, Boca Raton · Zbl 1384.49002
[26] Tabacman, ED; Tarzia, DA, Sufficient and/or necessary condition for the heat transfer coefficient on \(\Gamma_1\) and the heat flux on \(\Gamma_2\) to obtain a steady-state two-phase Stefan problem, J. Differ. Equ., 77, 16-37 (1989) · Zbl 0682.35109 · doi:10.1016/0022-0396(89)90155-1
[27] Tarzia, DA, Sur le problème de Stefan à deux phases, C. R. Acad. Sci. Paris Ser. A, 288, 941-944 (1979) · Zbl 0416.35001
[28] Tarzia, D.A.: Aplicación de métodos variacionales en el caso estacionario del problema de Stefan a dos fases. Math. Notae 27, 145-156 (1979-1980) · Zbl 0456.76093
[29] Tarzia, D.A.: Una familia de problemas que converge hacia el caso estacionario del problema de Stefan a dos fases. Math. Notae 27, 157-165 (1979-1980) · Zbl 0456.76091
[30] Tarzia, DA, An inequality for the constant heat flux to obtain a steady-state two-phase Stefan problem, Eng. Anal., 5, 4, 177-181 (1988) · Zbl 0758.35092 · doi:10.1016/0264-682X(88)90013-5
[31] Zeidler, E., Nonlinear Functional Analysis and Applications. II A/B (1990), New York: Springer, New York · Zbl 0684.47029
[32] Zeng, B.; Liu, Z.; Migorski, S., On convergence of solutions to variational-hemivariational inequalities, Z. Angew. Math. Phys., 69, 87, 1-20 (2018) · Zbl 06908352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.