×

More results related to geometric mean and singular values for matrices. (English) Zbl 1486.15023

Summary: In 2016, M. Lin [Electron. J. Linear Algebra 31, 120–124 (2016; Zbl 1341.15015)] conjectured that if \( \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \in \mathbb M_2(\mathbb M_n)\) is a positive semi-definite matrix then \(s_j(\Phi(B)) \leq s_j(\Phi(A) \sharp \Phi(C))\), \( j=1,2,\ldots,n\) where \(\Phi(X) = X + Tr(X) I_n\) and \(s_j(.)\) means the \(j\) th largest singular value. In this note, we confirm this conjecture when \(AB = BA\) and prove the more general result \[ s_j(\Psi_f(B)) \leq s_j( \Psi_f(A) \sharp \Psi_f(C)) \quad \text{and}\quad s_j(\Psi_f(|B|)) \leq s_j( \Psi_f(A \sharp C)),\;\;\; j = 1,2,\ldots,n \] where \(\Psi(X) = X + f(X) I_n\) and \(f\) is a Liebian function. Some related inequalities are also investigated.

MSC:

15A42 Inequalities involving eigenvalues and eigenvectors
15A18 Eigenvalues, singular values, and eigenvectors
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory

Citations:

Zbl 1341.15015
Full Text: DOI

References:

[1] Bhatia, R., Positive definite matrices (2007), New Jersey: Princeton University Press, New Jersey · Zbl 1133.15017
[2] Lin, M., A completely PPT map, Linear Algebra Appl, 459, 404-410 (2014) · Zbl 1320.15030 · doi:10.1016/j.laa.2014.07.040
[3] Ando, T., Geometric mean and norm Schwarz inequality, Ann Funct Anal, 7, 1-8 (2016) · Zbl 1339.47022 · doi:10.1215/20088752-3158073
[4] Zhang, F., Matrix theory: basic results and techniques (2011), New York: Springer Science and Business Media, New York · Zbl 1229.15002
[5] Bhatia, R., Matrix analysis (1997), New York: Springer-Verlag, New York
[6] Tao, Y., More results on singular value inequalities of matrices, Linear Algebra Appl, 416, 724-729 (2006) · Zbl 1106.15013 · doi:10.1016/j.laa.2005.12.017
[7] Lin, M., A singular value inequality related to a linear map, Electronic J Linear Algebra, 31, 120-124 (2016) · Zbl 1341.15015 · doi:10.13001/1081-3810.3108
[8] Lin, M., Inequalities related to \(####\) block PPT matrices, Oper Matrices, 9, 917-924 (2015) · Zbl 1345.15004 · doi:10.7153/oam-09-54
[9] Lieb, EH., Inequalities for some operator and matrix functions, Advances in Math, 20, 174-178 (1976) · Zbl 0324.15013 · doi:10.1016/0001-8708(76)90185-7
[10] Burqan, A.; Kittaneh, F., Singular value and norm inequalities associated with \(####\) positive semidefinite block matrices, Electron J Linear Algebra, 32, 116-124 (2017) · Zbl 1375.15032 · doi:10.13001/1081-3810.3442
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.