×

Coxeter combinatorics and spherical Schubert geometry. (English) Zbl 1486.14070

Let \(G\) be a connected complex reductive algebraic group, \(B\) a Borel subgroup of \(G\) and \(T\) a maximal torus in \(B\). By the Bruhat decomposition, the generalized flag variety \(G/B\) is the disjoint union of the subsets \(BwB/B\) where \(w\) runs over all elements of the Weyl group \(W\) of \(G\). The subset \(BwB/B\) is called a Schubert cell, and its closure \(X_w\) is called a Schubert variety. The action of \(B\) on \(G/B\) leaves stable Schubert varieties, and in general there are multiple intermediate parabolic subgroups \(B\subset P\subset G\) that leave a given Schubert variety stable.
The article under review focuses on the question whether, given such a Schubert variety \(X_w\) and parabolic subgroup \(P\), \(X_w\) is spherical under the action of a Levi subgroup \(H\) of \(P\). The latter means that a Borel subgroup of \(H\) acts with an open orbit in \(X_w\). An obvious example is given by the full generalized flag variety \(G/B\) which, by the Bruhat decomposition again, is a spherical Schubert variety under the action of \(H=P=G\). The article studies, more precisely, a combinatorial criterion which conjecturally characterizes when such a property holds. This conjecture is proved for rank two simple groups in the paper, as well as some other special cases, and has since been proved for type A groups [Y. Gao et al., “Classification of Levi-spherical Schubert varieties”, Preprint, arXiv:2104.10101]. Without stating the technical criterion in detail here, it should be noted that the criterion depends only on the Weyl group. In particular, the definition of the combinatorial counterpart of the Schubert variety being spherical is extended in the paper to finite Coxeter systems.
A significant part of the article focuses on the type A case, that is, when \(G=GL_n\) and the Weyl group is \(\mathfrak{S}_n\). In this setting, the combinatorial counterpart of sphericality is given a conjectural reformulation in terms of a pattern avoidance property for permutations, which has since been proved by C. Gaetz [“Spherical Schubert varieties and pattern avoidance”, Preprint, arXiv:2104.03264]. The sphericality property is further studied from a polynomial ring point of view by introducing the notion of split-symmetric polynomials (polynomials in \(n\)-variables which are symmetric in subsets of variables, according to a partition of \(n\)). This point of view allows to prove the aforementioned partial results towards the conjecture, and initial steps towards an algorithmic characterization of sphericality. This approach is also used in a companion paper [R. Hodges and A. Yong, “Multiplicity-free key polynomials”, Preprint, arXiv:2007.09229].

MSC:

14M27 Compactifications; symmetric and spherical varieties
14M15 Grassmannians, Schubert varieties, flag manifolds
05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory
14L30 Group actions on varieties or schemes (quotients)

Software:

MathOverflow

References:

[1] S. Assaf, D. Searles:Kohnert tableaux and a lifting of quasi-Schur functions, J. Combin. Theory Ser. A 156 (2018) 85-118. · Zbl 1381.05084
[2] R. S. Avdeev, A. V. Petukhov:Spherical actions on flag varieties (Russian), Mat. Sb. 205/9 (2014) 3-48; English translation in Sb. Math. 205/9-10 (2014) 1223-1263. · Zbl 1327.14217
[3] C. Bessenrodt:On multiplicity-free products of SchurP-functions, Ann. Comb. 6/2 (2002) 119-124. · Zbl 1009.05133
[4] C. Bessenrodt, C. Bowman:Multiplicity-free Kronecker products of characters of the symmetric groups, Adv. Math. 322 (2017) 473-529. · Zbl 1403.20017
[5] C. Bessenrodt, S. van Willigenburg:Multiplicity free Schur, skew Schur, and quasisymmetric Schur functions, Ann. Comb. 17/2 (2013) 275-294. · Zbl 1270.05099
[6] S. Billey, V. Lakshmibai:Singular Loci of Schubert Varieties, Progress in Mathematics 182, Birkhäuser, Boston (2000). · Zbl 0959.14032
[7] S. Billey, B. Pawlowski:Permutation patterns, Stanley symmetric functions, and generalized Specht modules, J. Combin. Theory Ser. A 127 (2014) 85-120. · Zbl 1300.05313
[8] A. Björner, F. Brenti:Combinatorics of Coxeter groups, Graduate Texts in Mathematics 231, Springer, New York (2005). · Zbl 1110.05001
[9] N. Bourbaki:Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics, Springer, Berlin (2002). · Zbl 0983.17001
[10] D. Brewster, R. Hodges, A. Yong:Proper permutations, Schubert geometry, and randomness, J. Comb. (2021), to appear.
[11] M. Brion:Lectures on the geometry of flag varieties, in:Topics in Cohomological Studies of Algebraic Varieties, P. Pragacz (ed.), Trends in Mathematics, Birkhäuser, Basel (2005) 33-85. · Zbl 1487.14105
[12] M. Brion, D. Luna, T. Vust:Espaces homogènes sphériques, Invent. Math. 84/3 (1986) 617-632. · Zbl 0604.14047
[13] A. S. Buch, A. Kresch, H. Tamvakis, A. Yong:Schubert polynomials and quiver formulas, Duke Math. J. 122/1 (2004) 125-143. · Zbl 1072.14067
[14] A. S. Buch, A. Kresch, H. Tamvakis, A. Yong:Grothendieck polynomials and quiver formulas, Amer. J. Math. 127/3 (2005) 551-567. · Zbl 1084.14048
[15] M. Can, R. Hodges:Sphericality and smoothness of Schubert varieties, arXiv: 1803.05515v5 (2018).
[16] C. De Concini, V. Lakshmibai:Arithmetic Cohen-Macaulayness and arithmetic normality for Schubert varieties, Amer. J. Math. 103/5 (1981) 835-850. · Zbl 0475.14045
[17] M. Demazure:Une nouvelle formule des caractéres, Bull. Sci. Math. (2), 98/3 (1974) 163-172. · Zbl 0365.17005
[18] M. Develin, J. L. Martin, V. Reiner:Classification of Ding’s Schubert varieties: finer rook equivalence, Canad. J. Math. 59/1 (2007) 36-62. · Zbl 1108.14038
[19] K. Ding:Rook placements and cellular decomposition of partition varieties, Discrete Math. 170/1-3 (1997) 107-151. · Zbl 0878.05085
[20] K. Fan:Occurrences of a simple reflection in the longest element of a Weyl group?, URL (version: 2011-03-21): https://mathoverflow.net/q/59037.
[21] A. Fink, K. Mészáros, A. St. Dizier:Zero-one Schubert polynomials, Math. Zeitschrift 297 (2021) 1023-1042. · Zbl 1464.14057
[22] W. Fulton:Young Tableaux. With Applications to Representation Theory and Geometry, London Math. Soc. Student Texts 35, Cambridge University Press (1997). · Zbl 0878.14034
[23] C. Gaetz:Spherical Schubert varieties and pattern avoidance, arXiv:2104.03264 (2021).
[24] Y. Gao, R. Hodges, A. Yong:Classification of Levi-spherical Schubert varieties, arXiv: 2104.10101 (2021).
[25] C. Gutschwager:On multiplicity-free skew characters and the Schubert calculus, Ann. Comb. 14/3 (2010) 339-353. · Zbl 1233.05201
[26] R. Hodges, V. Lakshmibai:Levi subgroup actions on Schubert varieties, induced decompositions of their coordinate rings, and sphericity consequences, Alg. Representation Theory 21/6 (2018) 1219-1249. · Zbl 1507.14070
[27] R. Hodges, V. Lakshmibai:A classification of spherical Schubert varieties in the Grassmannian, arXiv: 1809.08003 (2018). · Zbl 1507.14070
[28] R. Hodges, A. Yong:Multiplicity-free key polynomials, preprint (2020).
[29] J. E. Humphreys:Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge (1990). · Zbl 0725.20028
[30] B. Ion:Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116/2 (2003) 299-318. · Zbl 1039.33008
[31] A. Joseph:On the Demazure character formula, Ann. Sci. Ecole Norm. Sup. (4) 18/3 (1985) 389-419. · Zbl 0589.22014
[32] P. Karuppuchamy:On Schubert varieties, Comm. Algebra 41/4 (2013) 1365-1368. · Zbl 1277.14039
[33] A. Kohnert:Weintrauben, Polynome, Tableaux, Bay. Math. Schriften 38 (1990) 1-97. · Zbl 0755.05095
[34] V. Lakshmibai, B. Sandhya:Criterion for smoothness of Schubert varieties in Sl(n)/B, Proc. Indian Acad. Sci. Math. Sci. 100/1 (1990) 45-52. · Zbl 0714.14033
[35] A. Lascoux:Polynomials, (2013), http://www-igm.univ-mlv.fr/∼al/ARTICLES/ CoursYGKM.pdf.
[36] A. Lascoux, M.-P. Schützenberger:Treillis et bases des groupes de Coxeter, Electron. J. Combin. 3/2 (1996), art. no. 27. · Zbl 0885.05111
[37] D. Luna:Variétés sphériques de typeA, Publ. Math. Inst. Hautes Etudes Sci. No. 94 (2001) 161-226. · Zbl 1085.14039
[38] P. Magyar, J. Weyman, A. Zelevinsky:Multiple flag varieties of finite type, Adv. Math. 141/1 (1999) 97-118. · Zbl 0951.14034
[39] L. Manivel:Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, Amer. Math. Soc., Providence (2001). · Zbl 0998.14023
[40] S. Mason:An explicit construction of type A Demazure atoms, J. Algebraic Comb. 29/3 (2009) 295-313. · Zbl 1210.05175
[41] O. Pechenik, D. Searles:Asymmetric function theory, arXiv: 1904.01358 (2019). · Zbl 1446.05092
[42] N. Perrin,On the geometry of spherical varieties, Transform. Groups 19/1 (2014) 171-223. · Zbl 1309.14001
[43] S. Ramanan, A. Ramanathan:Projective normality of flag varieties and Schubert varieties, Invent. Math. 79/2 (1985) 217-224. · Zbl 0553.14023
[44] V. Reiner, M. Shimozono:Key polynomials and a flagged Littlewood-Richardson rule, J. Comb. Theory. Ser. A 70 (1995) 107-143. · Zbl 0819.05058
[45] E. Richmond, W. Slofstra:Billey-Postnikov decompositions and the fibre bundle structure of Schubert varieties, Math. Ann. 366/1-2 (2016) 31-55. · Zbl 1383.14013
[46] C. Ross, A. Yong:Combinatorial rules for three bases of polynomials, Sém. Lothar. Combin. 74 (2015-2018), art. no. B74a. · Zbl 1328.05200
[47] R. P. Stanley:Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). · Zbl 0928.05001
[48] J. R. Stembridge:Multiplicity-free products of Schur functions, Ann. Comb. 5/2 (2001) 113-121. · Zbl 0990.05130
[49] J. R. Stembridge:Multiplicity-free products and restrictions of Weyl characters, Representation Theory 7 (2003) 404-439. · Zbl 1060.17001
[50] B. E. Tenner:Pattern avoidance and the Bruhat order, J. Combin. Theory Ser. A 114/5 (2007) 888-905. · Zbl 1146.05054
[51] H. Thomas, A. Yong:Multiplicity-free Schubert calculus, Canad. Math. Bull. 53/1 (2010) 171-186 · Zbl 1210.14056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.