×

Galois families of modular forms and application to weight one. (English) Zbl 1486.11083

Families of modular forms and their attached Galois representations are of fundamental importance in many arithmetic questions. The authors introduce a new kind of families: for a given prime \(p\) they introduce Galois families of modular forms. They are a new kind of family coming from Galois representations of the absolute Galois groups of rational function fields over \(\mathbb Q\). Such a family can be taken to consist of classical holomorphic Hecke eigenforms or can be chosen to be made of Katz modular Hecke eigenforms defined over \(\overline{\mathbb F}_p\).
“Galois families are fundamentally different from other kinds of families of modular forms, such as Hida families. On the one hand, if we took the classical members of a Hida family, the field cut out by the mod \(p\) Galois representation would be the same in all cases. On the other hand, Galois families do not see \(p\)-adic deformations, so they miss the interesting information in Hida families. Galois families are rooted in field arithmetic and we see our paper as a step towards strengthening connections between field arithmetic and the automorphic theory.”
“We exhibit some examples and provide an infinite Galois family of non-liftable weight one Katz modular eigenforms over \(\overline{\mathbb F}_p\) for \(p \in \{3,5,7,11\}\).”

MSC:

11F80 Galois representations
11F33 Congruences for modular and \(p\)-adic modular forms
11R32 Galois theory

References:

[1] Beckmann, S., On extensions of number fields obtained by specializing branched coverings, Journal für die Reine und Angewandte Mathematik, 419, 27-53 (1991) · Zbl 0721.11052
[2] Curtis, C. W.; Reiner, I., Representation Theory of Finite Groups and Associative Algebras (1988), New York: Wiley Classics Library, John Wiley & Sons, New York · Zbl 0634.20001
[3] Dèbes, P., Théorie de Galois et géométrie: une introduction, Arithmétique de revêtements algébriques (Saint-Étienne, 2000), 1-26 (2001), Paris: Société Mathématique de France, Paris · Zbl 1037.12006
[4] DeMeyer, F. R., Generic polynomials, Journal of Algebra, 84, 441-448 (1983) · Zbl 0521.12014 · doi:10.1016/0021-8693(83)90087-X
[5] Dèbes, P.; Fried, M. D., Rigidity and real residue class fields, Acta Arithmetica, 56, 291-323 (1990) · Zbl 0667.14014 · doi:10.4064/aa-56-4-291-323
[6] Dèbes, P.; Ghazi, N., Galois covers and the Hilbert-Grunwald property, Université de Grenoble. Annales de l’Institut Fourier, 62, 989-1013 (2012) · Zbl 1255.14022 · doi:10.5802/aif.2714
[7] Diamond, F.; Im, J., Modular forms and modular curves, Seminar on Fermat’s Last Theorem (Toronto, ON, 1993-1994), 39-133 (1995), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0853.11032
[8] Deligne, P.; Serre, J-P, Formes modulaires de poids 1, Annales Scientifiques de l’école Normale Supérieure, 7, 507-530 (1974) · Zbl 0321.10026 · doi:10.24033/asens.1277
[9] Diamond, F.; Shurman, J., A First Course in Modular Forms, Graduate Texts in Mathematics (2005), New York: Springer, New York · Zbl 1062.11022
[10] Edixhoven, B., The weight in Serre’s conjectures on modular forms, Inventiones Mathematicae, 109, 563-594 (1992) · Zbl 0777.11013 · doi:10.1007/BF01232041
[11] Edixhoven, B., Serre’s conjecture, Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), 209-242 (1997), New York: Springer, New York · Zbl 0918.11023 · doi:10.1007/978-1-4612-1974-3_7
[12] Emerton, M., p-adic families of modular forms (after Hida, Coleman, and Mazur), Astérisque, 339, 31-61 (2011) · Zbl 1356.11026
[13] Fried, M. D., Fields of definition of function fields and Hurwitz families-groups as Galois groups, Communications in Algebra, 5, 17-82 (1977) · Zbl 0478.12006 · doi:10.1080/00927877708822158
[14] Jensen, C. U.; Ledet, A.; Yui, N., Generic Polynomials, Mathematical Sciences Research Institute Publications (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1042.12001
[15] Katz, N. M., p-adic properties of modular schemes and modular forms, in Modular Functions of One Variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics, 69-190 (1973), Berlin: Springer, Berlin · Zbl 0271.10033
[16] Kisin, M., Modularity of 2-adic Barsotti-Tate representations, Inventiones Mathematicae, 178, 587-634 (2009) · Zbl 1304.11043 · doi:10.1007/s00222-009-0207-5
[17] König, J.; Legrand, F.; Neftin, D., On the local behavior of specializations of function field extensions, International Mathematics Research Notices, 2019, 2951-2980 (2019) · Zbl 1456.11220 · doi:10.1093/imrn/rny016
[18] Klüners, J.; Malle, G., A database for field extensions of the rationals, LMS Journal of Computation and Mathematics, 4, 182-196 (2001) · Zbl 1067.11516 · doi:10.1112/S1461157000000851
[19] Khare, C.; Wintenberger, J-P, Serre’s modularity conjecture. I, Inventiones Mathematicae, 178, 485-504 (2009) · Zbl 1304.11041 · doi:10.1007/s00222-009-0205-7
[20] Legrand, F., Specialization results and ramification conditions, Israel Journal of Mathematics, 214, 621-650 (2016) · Zbl 1380.12004 · doi:10.1007/s11856-016-1349-y
[21] Lavallee, M. J.; Spearman, B. K.; Yang, Q., PSL(2, 7) septimic fields with a power basis, Journal de Théorie des Nombres de Bordeaux, 24, 369-375 (2012) · Zbl 1280.11062 · doi:10.5802/jtnb.801
[22] Malle, G.; Matzat, B. H., Realisierung von Gruppen PSL_\(2({\mathbb{F}_p} )\) als Galoisgruppen über ℚ, Mathematische Annalen, 272, 549-565 (1985) · Zbl 0559.12005 · doi:10.1007/BF01455866
[23] Malle, G.; Matzat, B. H., Inverse Galois Theory, Springer Monographs in Mathematics (2018), Berlin: Springer, Berlin · Zbl 1406.12001
[24] Müller, P., Finiteness results for Hubert’s irreducibility theorem, Université de Grenoble. Annales de l’Institut Fourier, 52, 983-1015 (2002) · Zbl 1014.12002 · doi:10.5802/aif.1907
[25] Neukirch, J., Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften (1999), Berlin: Springer, Berlin · Zbl 0956.11021
[26] Neukirch, J.; Schmidt, A.; Wingberg, K., Cohomology of Number Fields, Grundlehren der mathematischen Wissenschaften (2008), Berlin: Springer, Berlin · Zbl 1136.11001
[27] Plans, B.; Vila, N., Galois covers of ℙ^1 over ℚ with prescribed local or global behavior by specialization, Journal de Théorie des Nombres de Bordeaux, 17, 271-282 (2005) · Zbl 1087.11068 · doi:10.5802/jtnb.490
[28] Quer, J., Liftings of projective 2-dimensional Galois representations and embedding problems, Journal of Algebra, 171, 541-566 (1995) · Zbl 0845.12003 · doi:10.1006/jabr.1995.1027
[29] Serre, J-P, Modular forms of weight one and Galois representations, Algebraic Number Fields: L-functions and Galois Properties (Proc. Sympos., Univ. Durham, Durham, 1975), 193-268 (1977), London: Academic Press, London · Zbl 0366.10022
[30] Serre, J-P, Local Fields, Graduate Texts in Mathematics (1979), New York-Berlin: Springer, New York-Berlin · Zbl 0423.12016
[31] Serre, J-P, Topics in Galois Theory, Research Notes in Mathematics (1992), Boston, MA: Jones and Bartlett, Boston, MA · Zbl 0746.12001
[32] Swan, R. G., Factorization of polynomials over finite fields, Pacific Journal of Mathematics, 12, 1099-1106 (1962) · Zbl 0113.01701 · doi:10.2140/pjm.1962.12.1099
[33] Völklein, H., Groups as Galois Groups, Cambridge Studies in Advanced Mathematics (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0868.12003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.