×

Identification of non-uniformly sampled Wiener systems with dead-zone non-linearities. (English) Zbl 1485.93605

Summary: In multi-rate systems, identifying non-uniformly sampled data (NUSD) models is a challenge. This study proposes an iteratively recursive least-squares identification algorithm for non-uniformly sampled Wiener systems with dead-zone non-linearities. First, an extended information vector is designed, in which both unknown parameters and inner variables exist. Then, based on the auxiliary model and iterative method, an auxiliary model-based iteratively recursive least-squares algorithm is developed to estimate the system parameters directly. Furthermore, to improve the convergence rate and disturbance rejection, a new modified forgetting factor function is presented. Compared with no or fixed forgetting factor algorithms, the proposed algorithm has a higher convergence speed and is more robust to white noise with different variances. The numerical simulation shows the effectiveness of the proposed algorithm, and it can be extended to other NUSD non-linear systems.

MSC:

93E12 Identification in stochastic control theory
93E24 Least squares and related methods for stochastic control systems
93C57 Sampled-data control/observation systems
Full Text: DOI

References:

[1] M. Embiruçu and C. Fontes, Multirate multivariable generalized predictive control and its application to a slurry reactor for ethylene polymerization, Chem. Eng. Sci. 61 (2006), pp. 5754-5767. doi:10.1016/j.ces.2006.05.009​​ [Crossref], [Web of Science ®], [Google Scholar]
[2] J.S. Vardakas, I.D. Moscholios, M.D. Logothetis, and V.G. Stylianakis, Performance analysis of OCDMA PONs supporting multi-rate bursty traffic, IEEE Trans. Commun. 61 (2013), pp. 3374-3384. doi:10.1109/TCOMM.2013.061913.120798[Crossref], [Web of Science ®], [Google Scholar]
[3] F. Ding, L. Qin, and T.W. Chen, Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica. 45 (2009), pp. 324-332. doi:10.1016/j.automatica.2008.08.007[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1158.93365
[4] Y.J. Liu, L. Xie, and F. Ding, An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multirate systems, Proceedings of the Institution of Mechanical Engineers, Part. I: J. Syst. Control Eng. 223 (2009), pp. 445-454. doi:10.1243/09596518JSCE686[Crossref], [Web of Science ®], [Google Scholar]
[5] F. Ding, G.J. Liu, and P. Liu, Partially coupled stochastic gradient identification methods for non-uniformly sampled systems, IEEE Trans. Automat. Contr. 55 (2010), pp. 1976-1981. doi:10.1109/TAC.2010.2050713[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1368.93121
[6] L. Xie, Y.J. Liu, H.Z. Yang, and F. Ding, Modelling and identification for non-uniformly periodically sampled-data systems, IET Control Theory Appl. 4 (2010), pp. 784-794. doi:10.1049/iet-cta.2009.0064[Crossref], [Web of Science ®], [Google Scholar]
[7] Y.J. Liu, F. Ding, and Y. Shi, Least squares estimation for a class of non-uniformly sampled systems based on the hierarchical identification, principle, Circuits, Syst. Process. 31 (2012), pp. 1985-2000. doi:10.1007/s00034-012-9421-2[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1269.93127
[8] J. Ding and J.X. Lin, Modified subspace identification for periodically non-uniformly sampled systems by using the lifting technique, Circuits, Syst. Process. 33 (2014), pp. 1439-1449. doi:10.1007/s00034-013-9704-2[Crossref], [Web of Science ®], [Google Scholar]
[9] L. Xie, H.Z. Yang, F. Ding, and B. Huang, Novel model of non-uniformly sampled-data systems based on a time-varying backward shift operator, J. Process Control. 43 (2016), pp. 38-52. doi:10.1016/j.jprocont.2016.04.010[Crossref], [Web of Science ®], [Google Scholar]
[10] M.L. Corradini and G. Orlando, Rubust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator, IEEE Trans. Control Syst. Technol. 10 (2002), pp. 158-166. doi:10.1109/87.974349[Crossref], [Web of Science ®], [Google Scholar]
[11] P. Crama and J. Schoukens, Hammerstein-Wiener system estimator initialization, Automatica. 40 (2004), pp. 1543-1550. doi:10.1016/j.automatica.2004.03.018[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1055.93017
[12] M. Milanese, C. Novara, and L. Pivano, Structured SM identification of vehicle vertical dynamics, Math. Comput. Model. Dyn. Syst. 11 (2005), pp. 195-207. doi:10.1080/13873950500068849[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1122.93323
[13] E.W. Bai, An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems, Automatica. 34 (1998), pp. 333-338. doi:10.1016/S0005-1098(97)00198-2[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0915.93018
[14] A. Wills, T.B. Schon, L. Ljung, and B. Ninness, Identification of Hammerstein-Wiener models, Automatica. 49 (2013), pp. 70-81. doi:10.1016/j.automatica.2012.09.018[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1257.93109
[15] A. Hagenblad, L. Ljung, and A. Wills, Maximum likelihood identification of Wiener models, Automatica. 44 (2008), pp. 2697-2705. doi:10.1016/j.automatica.2008.02.016[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1152.93508
[16] F. Ding, X.P. Liu, and G. Liu, Identification methods for Hammerstein nonlinear systems, Digit Signal Process. 21 (2011), pp. 215-238. doi:10.1016/j.dsp.2010.06.006[Crossref], [Web of Science ®], [Google Scholar]
[17] E.W. Bai, Decoupling the linear and nonlinear parts in Hammerstein model identification, Automatica. 40 (2004), pp. 671-676. doi:10.1016/j.automatica.2003.11.007[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1168.93328
[18] T. Wigren and A.E. Nordsjo, Compensation of the RLS algorithm for output nonlinearities, IEEE Trans. Automat. Contr. 44 (1999), pp. 1913-1918. doi:10.1109/9.793736[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0956.93068
[19] F. Ding, Hierarchical multi-innovation stochastic gradient algorithm for hammerstein nonlinear system modeling, Appl Math Model. 37 (2013), pp. 1694-1704. doi:10.1016/j.apm.2012.04.039[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1349.93391
[20] X.H. Wang and F. Ding, Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique, Math. Comput. Model. Dyn. Syst. 22 (2016), pp. 113-140. doi:10.1080/13873954.2016.1142455[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1339.93106
[21] E.W. Bai, Identification of linear systems with hard input nonlinearities of known structure, Automatica. 38 (2002), pp. 853-860. doi:10.1016/S0005-1098(01)00281-3[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1010.93032
[22] J. Voros, Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities, Syst. Control Lett. 56 (2007), pp. 99-105. doi:10.1016/j.sysconle.2006.08.001[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1112.93019
[23] J. Voros, Modeling and parameter identification of systems with multisegment piecewise-linear characteristics, IEEE Trans. Autom. Control. 47 (2002), pp. 184-188. doi:10.1109/9.981742[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1364.93173
[24] D.Q. Wang, Y.Y. Chu, and G.W. Yang, Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems, Math Comput Model. 52 (2010), pp. 309-317. doi:10.1016/j.mcm.2010.03.002[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1201.93134
[25] J. Chen, X.P. Wang, and R.F. Ding, Gradient based estimation algorithm for Hammerstein systems with saturation and dead-zone nonlinearities, Appl Math Model. 36 (2012), pp. 238-243. doi:10.1016/j.apm.2011.05.049[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1236.93142
[26] J. Chen, X.L. Lu, and R.F. Ding, Gradient-based iterative algorithm for Wiener systems with saturation and dead-zone nonlinearities, J. Vib. Control. 20 (2014), pp. 634-640. doi:10.1177/1077546312466563[Crossref], [Web of Science ®], [Google Scholar]
[27] X.L. Li, R.F. Ding, and L.C. Zhou, Least-squares-based iterative identification algorithm for Hammerstein nonlinear systems with non-uniform sampling, Int. J. Comput. Math. 90 (2013), pp. 1524-1534. doi:10.1080/00207160.2012.758364[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1272.93082
[28] D.Q. Wang and F. Ding, Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems, Computers Math. with Appl. 56 (2008), pp. 3157-3164. doi:10.1016/j.camwa.2008.07.015[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1165.65308
[29] D. Alonso, F. Robbio, E. Paolini, and J. Moiolad, Modelling an inertia wheel pendulum benchmark, Math. Comput. Model. Dyn. Syst. 11 (2005), pp. 255-272. doi:10.1080/13873950500076784[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1098.70523
[30] X.L. Li, L.C. Zhou, R.F. Ding, and J. Sheng, Recursive least-squares estimation for hammerstein nonlinear systems with nonuniform sampling, Math. Probl. Eng. 8 (2013), pp. 165-185. doi:10.1155/2013/240929[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1296.93185
[31] X. Zhang, L. Wang, K. Zhang, and Y. Rui, Effect of amplitude and phase errors on the anti-jamming performance of satellite navigation system, Electron. Des. Eng. 20 (2012), pp. 53-60. [Google Scholar]
[32] I. Mizumoto, T. Chen, S. Ohdaira, M. Kumon, and Z. Iwai, Adaptive output feedback control of general MIMO systems using multirate sampling and its application to a cart-crane system [J], Automatica. 43 (2007), pp. 2077-2085. doi:10.1016/j.automatica.2007.04.017[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1138.93024
[33] F. Ding, T.W. Chen, and D.Y. Xiao, Identification of non-uniformly periodically sampled multirate systems, ACTA Electronica sinica. 32 (2004), pp. 1414-1420. [Google Scholar]
[34] M.C. Kung and B.F. Womack, Discrete time adaptive control of linear dynamic systems with a two-segment piecewise-linear asymmetric nonlinearity, IEEE Trans. Autom. Control. 29 (1984), pp. 170-172. doi:10.1109/TAC.1984.1103476[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0528.93045
[35] M. Morf and D. Lee, Recursive least squares ladder forms for fast parameter tracking, Proc. IEEE Conf. Decision Control. 17 (1978), pp. 1362-1367. doi:10.1109/CDC.1978.268140[Crossref], [Google Scholar] · Zbl 0436.93044
[36] C.C. Drovandi, A.N. Pettitt, and A. Lee, Bayesian indirect inference using a parametric auxiliary model, Stat. Sci. 30 (2015), pp. 72-95. doi:10.1214/14-STS498[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1332.62088
[37] D.Q. Wang, Y.Y. Chu, and F. Ding, Auxiliary model-based RELS and MI-ELS algorithm for Hammerstein OEMA systems, Computers Math. with Appl. 59 (2010), pp. 3092-3098. doi:10.1016/j.camwa.2010.02.030[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1193.93170
[38] F. Ding, P.X. Liu, and G.J. Liu, Gradient based and least-squares based iterative identification methods for OE and OEMA systems, Digit Signal Process. 20 (2010), pp. 664-677. doi:10.1016/j.dsp.2009.10.012[Crossref], [Web of Science ®], [Google Scholar]
[39] J. Meng, Fast-converging minimum frequency error RLS lattice filter for narrowband interference with discrete frequency steps, IEEE Trans. Signal. Process. 152 (2005), pp. 36-44. doi:10.1049/ip-vis:20051077. [Crossref], [Web of Science ®], [Google Scholar]
[40] F. Ding, Performance bounds of the forgetting factor least squares algorithm for time-varying systems with finite measurement data, IEEE Trans. Circuits Syst. I, Reg. Papers. 52 (2005), pp. 555-566. doi:10.1109/TCSI.2004.842874[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1374.93390
[41] D.J. Park, B.E. Jun, and J.H. Kim, Fast tracking RLS algorithm using novel variable forgetting factor with unity zone, Electron. Lett. 27 (1991), pp. 2150-2151. doi:10.1049/el:19911331[Crossref], [Web of Science ®], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.