×

Non-perturbative quantum Galileon in the exact renormalization group. (English) Zbl 1485.83183

Summary: We investigate the non-perturbative renormalization group flow of the scalar Galileon model in flat space. We discuss different expansion schemes of the Galileon truncation, including a heat-kernel based derivative expansion, a vertex expansion in momentum space and a curvature expansion in terms of a covariant geometric formulation. We find that the Galileon symmetry prevents a quantum induced renormalization group running of the Galileon couplings. Consequently, the Galileon truncation only features a trivial Gaussian fixed point.

MSC:

83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81T20 Quantum field theory on curved space or space-time backgrounds
81T17 Renormalization group methods applied to problems in quantum field theory
35K08 Heat kernel
17B69 Vertex operators; vertex operator algebras and related structures
53E10 Flows related to mean curvature
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
53Z05 Applications of differential geometry to physics

Software:

xTras; xPert; xAct

References:

[1] Dvali, G. R.; Gabadadze, Gregory; Porrati, Massimo, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B, 485, 208-214 (2000) · Zbl 0961.83045 · doi:10.1016/S0370-2693(00)00669-9
[2] Nicolis, Alberto; Rattazzi, Riccardo, Classical and quantum consistency of the DGP model, JHEP, 06, 059 (2004) · doi:10.1088/1126-6708/2004/06/059
[3] Nicolis, Alberto; Rattazzi, Riccardo; Trincherini, Enrico, The Galileon as a local modification of gravity, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.064036
[4] Horndeski, Gregory Walter, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys., 10, 363-384 (1974) · doi:10.1007/BF01807638
[5] Deffayet, C.; Esposito-Farese, Gilles; Vikman, A., Covariant Galileon, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.084003
[6] Chow, Nathan; Khoury, Justin, Galileon Cosmology, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.024037
[7] Gannouji, Radouane; Sami, M., Galileon gravity and its relevance to late time cosmic acceleration, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.024011
[8] Creminelli, Paolo; Nicolis, Alberto; Trincherini, Enrico, Galilean Genesis: An Alternative to inflation, JCAP, 11 (2010) · Zbl 1342.83236 · doi:10.1088/1475-7516/2010/11/021
[9] De Felice, Antonio; Tsujikawa, Shinji, Cosmology of a covariant Galileon field, Phys. Rev. Lett., 105 (2010) · doi:10.1103/PhysRevLett.105.111301
[10] Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun’ichi, G-inflation: Inflation driven by the Galileon field, Phys. Rev. Lett., 105 (2010) · Zbl 1243.83080 · doi:10.1103/PhysRevLett.105.231302
[11] Burrage, Clare; de Rham, Claudia; Seery, David; Tolley, Andrew J., Galileon inflation, JCAP, 01 (2011) · doi:10.1088/1475-7516/2011/01/014
[12] Deffayet, C.; Gao, Xian; Steer, D. A.; Zahariade, G., From k-essence to generalised Galileons, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.064039
[13] Gubitosi, Giulia; Piazza, Federico; Vernizzi, Filippo, The Effective Field Theory of Dark Energy, JCAP, 02 (2013) · Zbl 1277.83009 · doi:10.1088/1475-7516/2013/02/032
[14] Renaux-Petel, Sébastien, DBI Galileon in the Effective Field Theory of Inflation: Orthogonal non-Gaussianities and constraints from the Trispectrum, JCAP, 08 (2013) · doi:10.1088/1475-7516/2013/08/017
[15] de Rham, Claudia; Tolley, Andrew J., DBI and the Galileon reunited, JCAP, 05 (2010) · doi:10.1088/1475-7516/2010/05/015
[16] De Rham, Claudia; Keltner, Luke; Tolley, Andrew J., Generalized galileon duality, Phys. Rev. D, 90 (2014) · Zbl 1370.70054 · doi:10.1103/PhysRevD.90.024050
[17] Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo, Weakly Broken Galileon Symmetry, JCAP, 09 (2015) · doi:10.1088/1475-7516/2015/09/007
[18] de Paula Netto, Tiberio; Shapiro, Ilya L., One-loop divergences in the Galileon model, Phys. Lett. B, 716, 454-460 (2012) · doi:10.1016/j.physletb.2012.08.056
[19] de Rham, Claudia; Gabadadze, Gregory; Heisenberg, Lavinia; Pirtskhalava, David, Nonrenormalization and naturalness in a class of scalar-tensor theories, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.085017
[20] Heisenberg, Lavinia, Quantum Corrections in Galileons from Matter Loops, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.064005
[21] Brouzakis, N.; Codello, A.; Tetradis, N.; Zanusso, O., Quantum corrections in Galileon theories, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.125017
[22] Brouzakis, Nikolaos; Tetradis, Nikolaos, Suppression of Quantum Corrections by Classical Backgrounds, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.125004
[23] Goon, Garrett; Hinterbichler, Kurt; Joyce, Austin; Trodden, Mark, Aspects of Galileon Non-Renormalization, JHEP, 11, 100 (2016) · Zbl 1390.83279 · doi:10.1007/JHEP11(2016)100
[24] Saltas, Ippocratis D.; Vitagliano, Vincenzo, Quantum corrections for the cubic Galileon in the covariant language, JCAP, 05 (2017) · Zbl 1515.83098 · doi:10.1088/1475-7516/2017/05/020
[25] Heisenberg, Lavinia; Steinwachs, Christian F., One-loop renormalization in Galileon effective field theory, JCAP, 01 (2020) · Zbl 1489.83019 · doi:10.1088/1475-7516/2020/01/014
[26] Heisenberg, Lavinia; Steinwachs, Christian F., Geometrized quantum Galileons, JCAP, 02 (2020) · Zbl 1489.83089 · doi:10.1088/1475-7516/2020/02/031
[27] Goon, Garrett; Melville, Scott; Noller, Johannes, Quantum corrections to generic branes: DBI, NLSM, and more, JHEP, 01, 159 (2021) · Zbl 1459.81091 · doi:10.1007/JHEP01(2021)159
[28] Howe, Paul S.; Papadopoulos, G.; Stelle, K. S., The Background Field Method and the Nonlinear σ Model, Nucl. Phys. B, 296, 26-48 (1988) · doi:10.1016/0550-3213(88)90379-3
[29] Buchbinder, I. L.; Ketov, S. V., The Fourth order nonlinear sigma models and asymptotic freedom in four-dimensions, Fortsch. Phys., 39, 1-20 (1991)
[30] Buchbinder, I. L.; Ketov, S. V., Single Loop Counterterm for Four-dimensional σ Model With Higher Derivatives, Theor. Math. Phys., 77, 1032-1038 (1988) · doi:10.1007/BF01028677
[31] Barvinsky, Andrei O.; Blas, Diego; Herrero-Valea, Mario; Sibiryakov, Sergey M.; Steinwachs, Christian F., Renormalization of gauge theories in the background-field approach, JHEP, 07, 035 (2018) · Zbl 1395.83024 · doi:10.1007/JHEP07(2018)035
[32] Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav, Tree-level Amplitudes in the Nonlinear Sigma Model, JHEP, 05, 032 (2013) · Zbl 1392.81139 · doi:10.1007/JHEP05(2013)032
[33] Kampf, Karol; Novotny, Jiří, Unification of Galileon Dualities, JHEP, 10, 006 (2014) · doi:10.1007/JHEP10(2014)006
[34] Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav, Simple Recursion Relations for General Field Theories, JHEP, 06, 118 (2015) · Zbl 1388.81257 · doi:10.1007/JHEP06(2015)118
[35] Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.221602
[36] Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Shen, Chia-Hsien; Trnka, Jaroslav, On-Shell Recursion Relations for Effective Field Theories, Phys. Rev. Lett., 116 (2016) · Zbl 1377.81123 · doi:10.1103/PhysRevLett.116.041601
[37] Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Shen, Chia-Hsien; Trnka, Jaroslav, A Periodic Table of Effective Field Theories, JHEP, 02, 020 (2017) · Zbl 1377.81123 · doi:10.1007/JHEP02(2017)020
[38] Carrasco, John Joseph M.; Rodina, Laurentiu, UV considerations on scattering amplitudes in a web of theories, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.125007
[39] Kampf, Karol; Novotny, Jiri; Shifman, Mikhail; Trnka, Jaroslav, New Soft Theorems for Goldstone Boson Amplitudes, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.111601
[40] Kampf, Karol; Novotný, Jiří, Scattering Amplitudes and Soft Theorems in Multi-Flavor Galileon Theories, JHEP, 12, 056 (2020) · doi:10.1007/JHEP12(2020)056
[41] Dupuis, N.; Canet, L.; Eichhorn, A.; Metzner, W.; Pawlowski, J. M.; Tissier, M., The nonperturbative functional renormalization group and its applications (2020) · Zbl 1476.81084 · doi:10.1016/j.physrep.2021.01.001
[42] Litim, Daniel F., Optimization of the exact renormalization group, Phys. Lett. B, 486, 92-99 (2000) · doi:10.1016/S0370-2693(00)00748-6
[43] Litim, Daniel F., Optimized renormalization group flows, Phys. Rev. D, 64 (2001) · doi:10.1103/PhysRevD.64.105007
[44] Codello, Alessandro; Demmel, Maximilian; Zanusso, Omar, Scheme dependence and universality in the functional renormalization group, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.027701
[45] Knorr, Benjamin, Exact solutions and residual regulator dependence in functional renormalisation group flows (2020)
[46] Balog, Ivan; Chaté, Hugues; Delamotte, Bertrand; Marohnic, Maroje; Wschebor, Nicolás, Convergence of Nonperturbative Approximations to the Renormalization Group, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.240604
[47] Tetradis, N.; Wetterich, C., Scale dependence of the average potential around the maximum in phi**4 theories, Nucl. Phys. B, 383, 197-217 (1992) · doi:10.1016/0550-3213(92)90676-3
[48] Morris, Tim R., Derivative expansion of the exact renormalization group, Phys. Lett. B, 329, 241-248 (1994) · Zbl 1190.81094 · doi:10.1016/0370-2693(94)90767-6
[49] Morris, Tim R., On truncations of the exact renormalization group, Phys. Lett. B, 334, 355-362 (1994) · doi:10.1016/0370-2693(94)90700-5
[50] Morris, Tim R.; Turner, Michael D., Derivative expansion of the renormalization group in O(N) scalar field theory, Nucl. Phys. B, 509, 637-661 (1998) · doi:10.1016/S0550-3213(97)00640-8
[51] Litim, Daniel F., Derivative expansion and renormalization group flows, JHEP, 11, 059 (2001) · doi:10.1088/1126-6708/2001/11/059
[52] Canet, Leonie; Delamotte, Bertrand; Mouhanna, Dominique; Vidal, Julien, Nonperturbative renormalization group approach to the Ising model: A Derivative expansion at order partial**4, Phys. Rev. B, 68 (2003) · doi:10.1103/PhysRevB.68.064421
[53] Percacci, Roberto, Asymptotic safety in gravity and sigma models, PoS, CLAQG08, 002 (2011) · doi:10.22323/1.079.0002
[54] Percacci, Roberto; Zanusso, Omar, One loop beta functions and fixed points in Higher Derivative Sigma Models, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.065012
[55] Codello, Alessandro; Safari, Mahmoud; Vacca, Gian Paolo; Zanusso, Omar, Leading order CFT analysis of multi-scalar theories in d2, Eur. Phys. J. C, 79, 331 (2019) · doi:10.1140/epjc/s10052-019-6817-1
[56] Defenu, N.; Codello, A., Scaling solutions in the derivative expansion, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.016013
[57] Codello, A.; Safari, M.; Vacca, G. P.; Zanusso, O., Critical models with N ≤4 scalars in d=4-ϵ, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.065017
[58] Codello, A.; Tetradis, N.; Zanusso, O., The renormalization of fluctuating branes, the Galileon and asymptotic safety, JHEP, 04, 036 (2013) · Zbl 1342.81337 · doi:10.1007/JHEP04(2013)036
[59] Luty, Markus A.; Porrati, Massimo; Rattazzi, Riccardo, Strong interactions and stability in the DGP model, JHEP, 09, 029 (2003) · doi:10.1088/1126-6708/2003/09/029
[60] Hinterbichler, Kurt; Trodden, Mark; Wesley, Daniel, Multi-field galileons and higher co-dimension branes, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.124018
[61] Heisenberg, Lavinia, A systematic approach to generalisations of General Relativity and their cosmological implications, Phys. Rept., 796, 1-113 (2019) · doi:10.1016/j.physrep.2018.11.006
[62] Wetterich, Christof, Exact evolution equation for the effective potential, Phys. Lett. B, 301, 90-94 (1993) · doi:10.1016/0370-2693(93)90726-X
[63] Reuter, M.; Wetterich, C., Effective average action for gauge theories and exact evolution equations, Nucl. Phys. B, 417, 181-214 (1994) · doi:10.1016/0550-3213(94)90543-6
[64] Morris, Tim R., The Exact renormalization group and approximate solutions, Int. J. Mod. Phys. A, 9, 2411-2450 (1994) · Zbl 0985.81604 · doi:10.1142/S0217751X94000972
[65] Honerkamp, J., Chiral multiloops, Nucl. Phys. B, 36, 130-140 (1972) · doi:10.1016/0550-3213(72)90299-4
[66] Gasser, J.; Leutwyler, H., Chiral Perturbation Theory to One Loop, Annals Phys., 158, 142 (1984) · doi:10.1016/0003-4916(84)90242-2
[67] Codello, Alessandro; Percacci, Roberto; Rahmede, Christoph, Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation, Annals Phys., 324, 414-469 (2009) · Zbl 1161.83343 · doi:10.1016/j.aop.2008.08.008
[68] Barvinsky, A. O.; Vilkovisky, G. A., The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity, Phys. Rept., 119, 1-74 (1985) · doi:10.1016/0370-1573(85)90148-6
[69] Benedetti, Dario; Groh, Kai; Machado, Pedro F.; Saueressig, Frank, The Universal RG Machine, JHEP, 06, 079 (2011) · Zbl 1298.83042 · doi:10.1007/JHEP06(2011)079
[70] Barvinsky, A. O.; Vilkovisky, G. A., Covariant perturbation theory. 2: Second order in the curvature. General algorithms, Nucl. Phys. B, 333, 471-511 (1990) · doi:10.1016/0550-3213(90)90047-H
[71] Barvinsky, A. O.; Vilkovisky, G. A., Covariant perturbation theory. 3: Spectral representations of the third order form-factors, Nucl. Phys. B, 333, 512-524 (1990) · doi:10.1016/0550-3213(90)90048-I
[72] Codello, Alessandro; Zanusso, Omar, On the non-local heat kernel expansion, J. Math. Phys., 54 (2013) · Zbl 1282.35181 · doi:10.1063/1.4776234
[73] Codello, Alessandro; Percacci, Roberto; Rachwał, Lesław; Tonero, Alberto, Computing the Effective Action with the Functional Renormalization Group, Eur. Phys. J. C, 76, 226 (2016) · doi:10.1140/epjc/s10052-016-4063-3
[74] Knorr, Benjamin; Ripken, Chris; Saueressig, Frank, Form Factors in Asymptotic Safety: conceptual ideas and computational toolbox, Class. Quant. Grav., 36 (2019) · Zbl 1478.83093 · doi:10.1088/1361-6382/ab4a53
[75] Steinwachs, Christian F., Combinatorial aspects in the one-loop renormalization of higher derivative theories (2019)
[76] C.F. Steinwachs, in preparation.
[77] Barvinsky, A. O.; Kamenshchik, A. Yu.; Karmazin, I. P., The Renormalization group for nonrenormalizable theories: Einstein gravity with a scalar field, Phys. Rev. D, 48, 3677-3694 (1993) · doi:10.1103/PhysRevD.48.3677
[78] Shapiro, Ilya L.; Takata, Hiroyuki, One loop renormalization of the four-dimensional theory for quantum dilaton gravity, Phys. Rev. D, 52, 2162-2175 (1995) · doi:10.1103/PhysRevD.52.2162
[79] Steinwachs, Christian F.; Kamenshchik, Alexander Yu., One-loop divergences for gravity non-minimally coupled to a multiplet of scalar fields: calculation in the Jordan frame. I. The main results, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.024026
[80] Steinwachs, Christian FriedrichNon-minimal Higgs inflation and frame dependence in cosmology2012 · Zbl 1293.81006
[81] Kamenshchik, Alexander Yu.; Steinwachs, Christian F., Question of quantum equivalence between Jordan frame and Einstein frame, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.084033
[82] Ruf, Michael S.; Steinwachs, Christian F., One-loop divergences for f(R) gravity, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.044049
[83] Ruf, Michael S.; Steinwachs, Christian F., Quantum equivalence of f(R) gravity and scalar-tensor theories, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.044050
[84] Machado, Pedro F.; Saueressig, Frank, On the renormalization group flow of f(R)-gravity, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.124045
[85] Codello, Alessandro; Percacci, Roberto; Rahmede, Christoph, Ultraviolet properties of f(R)-gravity, Int. J. Mod. Phys. A, 23, 143-150 (2008) · doi:10.1142/S0217751X08038135
[86] Narain, Gaurav; Percacci, Roberto, Renormalization Group Flow in Scalar-Tensor Theories. I, Class. Quant. Grav., 27 (2010) · Zbl 1189.83078 · doi:10.1088/0264-9381/27/7/075001
[87] Narain, Gaurav; Rahmede, Christoph, Renormalization Group Flow in Scalar-Tensor Theories. II, Class. Quant. Grav., 27 (2010) · Zbl 1188.83075 · doi:10.1088/0264-9381/27/7/075002
[88] Percacci, R., Renormalization group flow of Weyl invariant dilaton gravity, New J. Phys., 13 (2011) · Zbl 1448.83044 · doi:10.1088/1367-2630/13/12/125013
[89] Henz, Tobias; Pawlowski, Jan Martin; Rodigast, Andreas; Wetterich, Christof, Dilaton Quantum Gravity, Phys. Lett. B, 727, 298-302 (2013) · Zbl 1331.81216 · doi:10.1016/j.physletb.2013.10.015
[90] Benedetti, Dario; Guarnieri, Filippo, Brans-Dicke theory in the local potential approximation, New J. Phys., 16 (2014) · Zbl 1451.83063 · doi:10.1088/1367-2630/16/5/053051
[91] Percacci, Roberto; Vacca, Gian Paolo, Search of scaling solutions in scalar-tensor gravity, Eur. Phys. J. C, 75, 188 (2015) · doi:10.1140/epjc/s10052-015-3410-0
[92] Labus, Peter; Percacci, Roberto; Vacca, Gian Paolo, Asymptotic safety in O(N) scalar models coupled to gravity, Phys. Lett. B, 753, 274-281 (2016) · Zbl 1367.83074 · doi:10.1016/j.physletb.2015.12.022
[93] Henz, Tobias; Pawlowski, Jan Martin; Wetterich, Christof, Scaling solutions for Dilaton Quantum Gravity, Phys. Lett. B, 769, 105-110 (2017) · Zbl 1370.81199 · doi:10.1016/j.physletb.2017.01.057
[94] Merzlikin, Boris S.; Shapiro, Ilya L.; Wipf, Andreas; Zanusso, Omar, Renormalization group flows and fixed points for a scalar field in curved space with nonminimal F(ϕ)R coupling, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.125007
[95] Martini, Riccardo; Zanusso, Omar, Renormalization of multicritical scalar models in curved space, Eur. Phys. J. C, 79, 203 (2019) · doi:10.1140/epjc/s10052-019-6721-8
[96] Eichhorn, Astrid; Pauly, Martin, Constraining power of asymptotic safety for scalar fields, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.026006
[97] J.M. Martin-Garcia et al., xact: Efficient tensor computer algebra for mathematica, (2002-2021) http://www.xact.es/.
[98] J.M. Martin-Garcia, xtensor: Fast abstract tensor computer algebra, (2002-2020) http://xact.es/xTensor/.
[99] Brizuela, David; Martin-Garcia, Jose M.; Mena Marugan, Guillermo A., xPert: Computer algebra for metric perturbation theory, Gen. Rel. Grav., 41, 2415-2431 (2009) · Zbl 1176.83004 · doi:10.1007/s10714-009-0773-2
[100] Nutma, Teake, xTras : A field-theory inspired xAct package for mathematica, Comput. Phys. Commun., 185, 1719-1738 (2014) · Zbl 1348.70003 · doi:10.1016/j.cpc.2014.02.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.