×

Stability of traveling wavefronts for a 2D lattice dynamical system arising in a diffusive population model. (English) Zbl 1485.39016

Summary: This paper is concerned with the traveling wavefronts of a 2D two-component lattice dynamical system. This problem arises in the modeling of a species with mobile and stationary subpopulations in an environment in which the habitat is two-dimensional and divided into countable niches. The existence and uniqueness of the traveling wavefronts of this system have been studied in [the author and S.-L. Wu, Nonlinear Anal., Real World Appl. 12, No. 2, 1178–1191 (2011; Zbl 1243.34013)]. However, the stability of the traveling wavefronts remains unsolved. In this paper, we show that all noncritical traveling wavefronts with given direction of propagation and wave speed are exponentially stable in time. In particular, we obtain the exponential convergence rate.

MSC:

39A14 Partial difference equations
34K31 Lattice functional-differential equations
92D25 Population dynamics (general)

Citations:

Zbl 1243.34013

References:

[1] Chang, C.-H.: The stability of traveling wave solutions for a diffusive competition system of three species. J. Math. Anal. Appl. 459, 564-576 (2018) · Zbl 1379.35052 · doi:10.1016/j.jmaa.2017.10.013
[2] Chen, X., Guo, J.-S.: Existence and asymptotic stability of travelling waves of discrete quasilinear monostable equations. J. Differ. Equ. 184, 549-569 (2002) · Zbl 1010.39004 · doi:10.1006/jdeq.2001.4153
[3] Chow, S.-N.; Macki, J. W. (ed.); Zecca, P. (ed.), Lattice dynamical systems, No. 1822, 1-102 (2003), Berlin · Zbl 1046.37051 · doi:10.1007/978-3-540-45204-1_1
[4] Hadeler, K.P., Lewis, M.A.: Spatial dynamics of the diffusive logistic equation with a sedentary compartment. Can. Appl. Math. Q. 10, 473-499 (2002) · Zbl 1065.35141
[5] Hsu, C.-H., Lin, J.-J., Yang, T.-S.: Stability for monostable wave fronts of delayed lattice differential equations. J. Dyn. Differ. Equ. 29, 323-342 (2017) · Zbl 1485.34195 · doi:10.1007/s10884-015-9447-9
[6] Liu, X.-L., Pan, S.: Spreading speed in a nonmonotone equation with dispersal and delay. Mathematics 7, 291, 1-9 (2019) · doi:10.3390/math7030291
[7] Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1-40 (2007); Erratum: 61, 137-138 (2008) · Zbl 1106.76008 · doi:10.1002/cpa.20154
[8] Lin, C.-K., Lin, C.-T., Lin, Y., Mei, M.: Exponential stability of nonmonotone traveling waves for Nicholson’s blowflies equation. SIAM J. Math. Anal. 46, 1053-1084 (2014) · Zbl 1295.35171 · doi:10.1137/120904391
[9] Lin, C.-K., Mei, M.: On travelling wavefronts of the Nicholson’s blowies equation with diffusion. Proc. R. Soc. Edinb. A 140, 135-152 (2010) · Zbl 1194.35094 · doi:10.1017/S0308210508000784
[10] Lin, G., Li, W.-T., Pan, S.: Travelling wavefronts in delayed lattice dynamical systems with global interaction. J. Differ. Equ. Appl. 16, 1429-1446 (2010) · Zbl 1253.34058 · doi:10.1080/10236190902828387
[11] Mei, M., Lin, C.-K., Lin, C.-T., So, J.W.H.: Traveling wavefronts for time-delayed reaction-diffusion equation: II nonlocal nonlinearity. J. Differ. Equ. 247, 511-529 (2009) · Zbl 1173.35072 · doi:10.1016/j.jde.2008.12.020
[12] Mei, M., So, J.W.-H., Li, M., Shen, S.: Asymptotic stability of traveling waves for Nicholson’s blowflies equation with diffusion. Proc. R. Soc. Edinb. A 134, 579-594 (2004) · Zbl 1059.34019 · doi:10.1017/S0308210500003358
[13] Ouyang, Z., Ou, C.: Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete Contin. Dyn. Syst., Ser. B 17, 993-1007 (2012) · Zbl 1243.35024 · doi:10.3934/dcdsb.2012.17.993
[14] Shorrocks, B., Swingland, I.R.: Living in a Patch Environment. Oxford University Press, New York (1990)
[15] Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Math. Surveys Monogr., vol. 41. Am. Math. Soc., Providence (1995) · Zbl 0821.34003
[16] Wang, X.-S., Zhao, X.-Q.: Pulsating waves of a partially degenerate reaction-diffusion system in a periodic habitat. J. Differ. Equ. 259, 7238-7259 (2015) · Zbl 1332.35177 · doi:10.1016/j.jde.2015.08.019
[17] Wang, Z.-C., Li, W.-T., Ruan, S.: Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay. J. Differ. Equ. 238, 153-200 (2007) · Zbl 1124.35089 · doi:10.1016/j.jde.2007.03.025
[18] Wu, S.-L., Zhao, H.-Q., Liu, S.: Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability. Z. Angew. Math. Phys. 62, 377-397 (2011) · Zbl 1259.35060 · doi:10.1007/s00033-010-0112-1
[19] Wu, Y., Xing, X.: Stability of traveling waves with critical speeds for p-degree Fisher-type equations. Discrete Contin. Dyn. Syst. 20, 1123-1139 (2008) · Zbl 1163.35319 · doi:10.3934/dcds.2008.20.1123
[20] Zhang, K., Zhao, X.Q.: Asymptotic behaviour of a reaction-diffusion model with a quiescent stage. Proc. R. Soc. Lond. 463A, 1029-1043 (2007) · Zbl 1139.35058 · doi:10.1098/rspa.2006.1806
[21] Zhang, P., Li, W.-T.: Monotonicity and uniqueness of traveling waves for a reaction-diffusion model with a quiescent stage. Nonlinear Anal. TMA 72, 2178-2189 (2010) · Zbl 1184.35106 · doi:10.1016/j.na.2009.10.016
[22] Zhao, H.-Q., Wu, S.-L.: Wave propagation for a reaction-diffusion model with a quiescent stage on a 2D spatial lattice. Nonlinear Anal., Real World Appl. 12, 1178-1191 (2011) · Zbl 1243.34013 · doi:10.1016/j.nonrwa.2010.09.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.