×

Nonstandard Liouville tori and caustics in asymptotics in the form of Airy and Bessel functions for 2D standing coastal waves. (English. Russian original) Zbl 1485.35307

St. Petersbg. Math. J. 33, No. 2, 185-205 (2022); translation from Algebra Anal. 33, No. 2, 5-34 (2021).
Summary: The spectral problem \(-\langle \nabla ,D(x)\nabla \psi \rangle = \lambda \psi\) in a bounded two-dimensional domain \(\Omega\) is considered, where \(D(x)\) is a smooth function positive inside the domain and zero on the boundary whose gradient is different from zero on the boundary. This problem arises in the study of long waves trapped by the shore and by bottom irregularities. For its asymptotic solutions as \(\lambda \rightarrow \infty \), explicit formulas are given when \(D(x)\) has a special form that guarantees the complete integrability of the Hamiltonian system corresponding to the Hamiltonian \(H(x,p)=D(x)p^2\). Since the problem is degenerate, the relevant Liouville tori are not in the standard phase space \(T^*\Omega \), but in the “extended” phase space \(\boldsymbol{\Phi }\supset T^*\Omega \), while their restrictions to \(T^*\Omega\) are not compact and “go to infinity” with respect to momenta near the boundary of \(\Omega \). As a result, nonstandard caustics emerge, formed by the boundary or its part, near which asymptotic eigenfunctions are expressed in terms of a Bessel function of composite argument. Standard caustics (within the domain) may also appear, which yield Airy functions in the asymptotics.

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI

References:

[1] BabichBuld V. M. Babich and V. S. Buldyrev, Short-Wavelength diffraction theory. Asymptotic methods, Nauka, Moscow, 1972; English transl., Springer-Verlag, Berlin, 1991. 1245488
[2] BBM1985 V. M. Babich, V. S. Buldyrev, and I. A. Molotkov, The space-time ray method. Linear and nonlinear waves, Leningrad. Univ., Leningrad, 1985. (Russian) 886885 · Zbl 0678.35002
[3] BaKi2014 V. M. Babich and A. P. Kiselev, Elastic waves. High frequency theory, BHV, St. Petersburg, 2014; English transl., CRC Press, Taylor & Chapman, Boca Raton – London – New York, 2018. 3822378
[4] BabichBuldyrev1 V. M. Babich and V. S. Buldyrev, The art of asymptotics, Vestnik Leningrad. Univ. Mat. Meh. Astronom. 1977, no. 13, vyp. 3, 5-12. (Russian) 0470374 · Zbl 0374.41013
[5] BirSol M. Sh. Birman and M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Leningrad. Univ., Leningrad, 1980; English transl., Math. Appl. (Soviet Ser.), D. Reidel Publ. Co., Dordrecht, 1987. 609148 · Zbl 0744.47017
[6] OlRad O. A. Oleinik and E. V. Radkevic, Second order equations with nonnegative characteristic form, Mathematical Analysis, 1969, Akad. Nauk SSSR Vsesojuzn. Inst. Naucn. i Tehn. Inform., Moscow, 1971, 7-252. (Russian) 0457907 · Zbl 0217.41502
[7] Urs F. Ursell, Edge waves on a sloping beach, Proc. R. Soc. Lond. A. 214 (1952), 79-97. 50420 · Zbl 0047.43803
[8] Zhevandrov P. N. Zhevandrov, Edge waves on a gently sloping beach: uniform asymptotics, J. Fluid Mech. 233 (1991), 483-493. 1140088 · Zbl 0738.76005
[9] MerzonZhev A. Merzon and P. Zhevandrov, High-frequency asymptotics of edge waves on a beach of nonconstant slope SIAM J. Appl. Math. 59 (1998), no. 2, 529-546. MR1654415 1654415 · Zbl 0974.76018
[10] MasFed V. P. Maslov and M. V. Fedoryuk, Quasiclassical approximation for the equations of quantum mechanics, Nauka, Moscow, 1976; English transl., Math. Phys. Appl. Math., vol. 7, D. Reidel Publ. Co., Dordrecht, 1981. 0461590 · Zbl 0449.58002
[11] Laz V. F. Lazutkin, Quasiclassical asymptotic behavior of eigenfunctions, Itogi Nauki i Tekhniki, Current problems in math. Fundamental directions, vol. 34, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, pp. 135-174. 1066958; English transl., Partial differential equations. V, Encycl. Math. Sci., vol. 34, Springer, Berlin, 1999, pp. 133-171.
[12] Mat V. S. Matveev, Asymptotic eigenfunctions of the operator \(\nabla D(x,y)\nabla\) that correspond to Liouville metrics and waves on water trapped by bottom irregularities, Mat. Zametki 64 (1998), no. 3, 414-422; English transl., Math. Notes 64 (1998), no. 3-4, 357-363. 1680205 · Zbl 0926.35103
[13] Taimanov I. A. Taimanov, On first integrals of geodesic flows on a two-dimensional torus, Tr. Mat. Inst. Steklova 295 (2016), 241-260; English transl., Proc. Steklov Inst. Math. 295 (2016), no. 1, 225-242. 3628525 · Zbl 1362.37113
[14] Naz1 V. E. Nazaikinskii, Phase space geometry for a wave equation degenerating on the boundary of the domain, Mat. Zametki 92 (2012), no. 1, 153-156; English transl., Math. Notes 92 (2012), no. 1-2, 144-148. 3201552 · Zbl 1308.58017
[15] DN-Uni S. Yu. Dobrokhotov and V. E. Nazaikinskii, Lagrangian manifolds and efficient short-wave asymptotics in a neighborhood of a caustic cusp, Mat. Zametki 107 (2020), no. 5, 780-786; English transl., Math. Notes 108 (2020), no. 3, 318-338. 4153667 · Zbl 1483.53094
[16] Naz2 V. E. Nazaikinskii, The Maslov canonical operator on Lagrangian manifolds in the phase space corresponding to a wave equation degenerating on the boundary, Mat. Zametki 96 (2014), no. 2, 261-276; English transl., Math. Notes 96 (2014), no. 1-2, 248-260. 3344294 · Zbl 1330.53108
[17] DN-RJMP S. Yu. Dobrokhotov and V. E. Nazaikinskii, Efficient formulas for the Maslov canonical operator near a simple caustic, Russ. J. Math. Phys. 25 (2018), no. 4, 545-552. 3885779 · Zbl 1406.81036
[18] ADNTsAiry A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, Uniform asymptotics in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems, Teoret. Mat. Fiz. 201 (2019), no. 3, 382-414; English transl., Theoret. Math. Phys. 201 (2019), no. 3, 1742-1770. 4036829 · Zbl 1441.81091
[19] DoNa2017-Bes S. Yu. Dobrokhotov and V. E. Nazaikinskii, On the asymptotics of a Bessel-type integral that has applications in wave run-up theory, Mat. Zametki 102 (2017), no. 6, 828-835; English transl., Math. Notes 102 (2017), no. 5-6, 756-762. 3733325 · Zbl 1384.42001
[20] DNBes \bysame , Nonstandard Lagrangian singularities and asymptotic eigenfunctions of the degenerating operator \(-\frac ddxD(x)ddx\), Tr. Mat. Inst. Steklova 306 (2019), 83-99; English transl., Proc. Steklov Inst. Math. 306 (2019), no. 1, 74-89. 4040767 · Zbl 1452.34085
[21] ADN A. Yu. Anikin, S. Yu. Dobrokhotov, and V. E. Nazaikinskii, Simple asymptotics for a generalized wave equation with degenerating velocity and their applications in the linear long wave run-up problem, Mat. Zametki 104 (2018), no. 4, 483-504; English transl., Math. Notes 104 (2018), no. 3-4, 471-488. 3859385 · Zbl 1420.35151
[22] Smysh D. P. Hewett, J. R. Ockendon, and V. P. Smyshlyaev, Contour integral solutions of the parabolic wave equation, Wave Motion 84 (2019), 90-109. 3873971 · Zbl 1524.35496
[23] ADNTsBIll1 A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, Asymptotics, related to billiards with semi-rigid walls, of eigenfunctions of the two-dimensional \(\nabla D(x)\nabla\) operator and trapped coastal waves, Mat. Zametki 105 (2019), no. 5, 792-797; English transl., Math. Notes 105 (2019), no. 5-6, 789-794. 3951597 · Zbl 1426.37049
[24] ADNTsBill2 \bysame , Asymptotic eigenfunctions of the operator \(\nabla D(x) \nabla\) defined in a two-dimensional domain and degenerating on its boundary and billiards with semi-rigid walls, Differ. Uravn. 55 (2019), no. 5, 660-672; English transl., Differ. Equ. 55 (2019), no. 5, 644-657. 3976533 · Zbl 1418.37094
[25] ADis A. Yu. Anikin, Asymptotics of one-dimensional linear standing water waves with dispersion and degeneracy on the boundary, Mat. Zametki 107 (2020), no. 5, 774-779; English transl., Math. Notes 107 (2020), no. 5, 838-843. 4092572 · Zbl 1450.76004
[26] Fed83 M. V. Fedoryuk, Asymptotic analysis: linear ordinary differential equations, Nauka, Moscow, 1983; English transl., Springer-Verlag, Berlin, 1993. 1295032
[27] Bab86 V. M. Babich, Mathematical theory of diffraction (a survey of research carried out at the Laboratory of Mathematical Problems of Geophysics of the Leningrad Branch of the Institute of Mathematics), Tr. Mat. Inst. Steklov. 175 (1986), 47-62; English transl., Proc. Steklov Inst. Math. 175 (1988), no. 2, 47-63. 862119 · Zbl 0850.01021
[28] Ili89 A. M. Il\textprime in, Matching of asymptotic expansions of solutions of boundary value problems, Nauka, Moscow, 1989; English transl., Transl. Math. Monogr., vol. 102, Amer. Math. Soc., Providence, RI, 1992. 1182791 · Zbl 0671.35002
[29] Sla91 S. Yu. Slavyanov, Asymptotic solutions of the one-dimensional Schrodinger equation, Leningrad. Univ., Leningrad, 1991. 1115309; English transl., Transl. Math. Monogr., vol. 151, Amer. Math. Soc., Providence, RI, 1996. 1398655
[30] Arn V. I. Arnol\textprime d, A remark on the Weierstrass preparation theorem, Funkcional. Anal. i Prilozen. 1 (1967), no. 3, 1-8. (Russian) 0220969
[31] DMN2014 S. Yu. Dobrokhotov, G. N. Makrakis, and V. E. Nazaikinskii, Maslov’s canonical operator, Hormander’s formula, and localization of the Berry-Balazs solution in the theory of wave beams, Teoret. Mat. Fiz. 180 (2014), no. 2, 162-188; English transl., Theoret. Math. Phys. 180 (2014), no. 2, 894-916. 3344482 · Zbl 1323.81031
[32] MSSh78 A. S. Mishchenko, B. Yu. Sternin, and V. E. Shatalov, Lagrangian manifolds and the method of the canonical operator, Nauka, Moscow, 1978. (Russian) 511792
[33] DoNa2020 S. Yu. Dobrokhotov and V. E. Nazaikinskii, Lagrangian manifolds and efficient short-wave asymptotics in a neighborhood of a caustic cusp, Mat. Zametki 108 (2020), no. 3, 334-359; English transl., Math. Notes 108 (2020), no. 3, 318-338. 4153667 · Zbl 1483.53094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.