×

Anisotropic Gauss curvature flows and their associated dual Orlicz-Minkowski problems. (English) Zbl 1485.35252

Summary: In this paper we study a normalized anisotropic Gauss curvature flow of strictly convex, closed hypersurfaces in the Euclidean space. We prove that the flow exists for all time and converges smoothly to the unique, strictly convex solution of a Monge-Ampère type equation and we obtain a new existence result of solutions to the Dual Orlicz-Minkowski problem for smooth measures, especially for even smooth measures.

MSC:

35J96 Monge-Ampère equations
53C45 Global surface theory (convex surfaces à la A. D. Aleksandrov)
Full Text: DOI

References:

[1] Andrews, B.. Contraction of convex hypersurfaces by their affine normal. Jour. Diff. Geom. 43 (1996), 207-230. · Zbl 0858.53005
[2] Andrews, B.. Evolving convex curves. Calc. Vara. Part. Diff. Equa. 7 (1998), 315-371. · Zbl 0931.53030
[3] Andrews, B.. Gauss curvature flow the fate of the rolling stones. Invent. Math. 138 (1999), 151-161. · Zbl 0936.35080
[4] Andrews, B.. Motion of hypersurfaces by Gauss curvature. Paci. Jour. Math. 195 (2000), 1-34. · Zbl 1028.53072
[5] Andrews, B.. Classification of limiting shapes for isotropic curve flows. Jour. Amer. Math. Soc. 16 (2003), 443-459. · Zbl 1023.53051
[6] Andrews, B. and Chen, X.. Surface moving by powers of Gauss curvature. Pure. Appl. Math. Q. 8 (2012), 825-834. · Zbl 1263.53058
[7] Andrews, B., Guan, P. F. and Ni, L.. Flow by powers of the Gauss curvature. Adv. Math. 299 (2016), 174-201. · Zbl 1401.35159
[8] Böröczky, K., Lutwak, E., Yang, D. and Zhang, G.. The logarithmic Minkowski problem. Jour. Amer. Math. Soc. 26 (2013), 831-852. · Zbl 1272.52012
[9] Brendle, S., Choi, K. and Daskalopoulos, P.. Asymptotic behavior of flows by powers of the Gaussian curvature. Acta. Math. 219 (2017), 1-16. · Zbl 1385.53054
[10] Bryan, P., Ivaki, M. and Scheuer, J.. A unified flow approach to smooth,even \(L_p\)-Minkowski problems. Anal. PDE. 12 (2018), 259-280. · Zbl 1401.53048
[11] Chen, C., Huang, Y. and Zhao, Y.. Smooth solutions to the \(L_p\) dual Minkowski problem. Math. Ann. 373 (2019), 953-976. · Zbl 1417.52008
[12] Chen, H. and Li, Q.. The \(L_p\) dual Minkowski problems and related parabolic flows, preprint. · Zbl 1469.35115
[13] Chou, K. and Wang, X.. A logarithmic Gauss curvature flow and the Minkowski problem. Ann. Inst. H. Poincariäe Anal. Non Liniäeaire17 (2000), 733-751. · Zbl 1071.53534
[14] Chow, B.. Deforming convex hypersurfaces by the n-th root of the Gaussian curvature. Jour. Diff. Geom. 22 (1985), 117-138. · Zbl 0589.53005
[15] Firey, W.. Shapes of worn stones. Mathematika21 (1974), 1-11. · Zbl 0311.52003
[16] Guan, P. F. and Ni, L.. Entropy and a convergence theorem for Gauss curvature flow in high dimension. Jour. Euro. Math. Soc. 19 (2017), 3735-3761. · Zbl 1386.35180
[17] Huang, Y., Lutwak, E., Yang, D. and Zhang, G.. Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math. 216 (2016),325-388. · Zbl 1372.52007
[18] Li, Q., Sheng, W. and Wang, X.. Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems. J. Eur. Math. Soc. 22 (2020), 893-923. · Zbl 1445.53066
[19] Liu, Y. and Li, J.. A flow method for the dual Orlicz-Minkowski problem. Trans. Amer. Math. Soc. 373 (2020), 5833-5853. · Zbl 1458.35214
[20] Tso, K.. Deforming a hypersurface by its Gauss-Kronecker curvature. Comm. Pure Appl. Math. 38 (1985), 867-882. · Zbl 0612.53005
[21] Urbas, J.. An expansion of convex hypersurfaces. Jour. Diff. Geom. 33 (1991), 91-125. · Zbl 0746.53006
[22] Wang, X.. Existence of convex hypersurfaces with prescribed Gauss-Kronecker curvature. Trans. Amer. Math. Soc. 348 (1996), 4501-4524. · Zbl 0926.53024
[23] Zhao, Y.. The Dual Minkowski Problem for Negative Indices. Calc. Vara. Part. Diff. Equa. 56 (2017) Art. 18, 16 pp. · Zbl 1392.52005
[24] Zhu, B., Xing, S. and Ye, D.. The dual Orlicz-Minkowski problem. Jour. Geom. Anal. 430 (2015), 810-829. · Zbl 1320.52008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.