×

Nonlinear nonhomogeneous obstacle problems with multivalued convection term. (English) Zbl 1485.35160

The authors consider an obstacle problem of the form \begin{align*} \begin{cases} -\text{div}\ a(x,\nabla u)\in f(x,u,\nabla u)& \text{in }\Omega,\\ u\leq \Phi &\text{in }\Omega,\\ u=0&\text{on }\partial\Omega, \end{cases} \end{align*} where \(a\colon\overline{\Omega}\times\mathbb{R}^N\to\mathbb{R}^N\) is continuous and satisfies suitable structure conditions, \(\Phi\colon \Omega\to [0,+\infty]\) is a given obstacle and \(f\colon\Omega\times\mathbb{R}\times\mathbb{R}^N\to2^{\mathbb{R}}\) is a multivalued function depending on the gradient of the solution satisfying appropriate growth and coercivity properties. The main result in this paper shows that the solution set of the problem above is nonempty, bounded and closed. Its proof is based on the surjectivity theorem for multivalued functions given by the sum of a maximal monotone multivalued operator and a bounded multivalued pseudomonotone one.

MSC:

35J20 Variational methods for second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35J60 Nonlinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Averna, D.; Motreanu, D.; Tornatore, E., Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett., 61, 102-107 (2016) · Zbl 1347.35121 · doi:10.1016/j.aml.2016.05.009
[2] Bai, Y.R.: Existence of solutions to nonhomogeneous Dirichlet problems with dependence on the gradient. Electron. J. Differ. Equ. 101(18), (2018) pp. 1-18 · Zbl 1388.35062
[3] Bai, Y.R., Gasiński, L., Papageorgiou, N.S.: Nonlinear nonhomogeneous Robin problems with dependence on the gradient. Bound Value Probl. 17, (2018). doi:10.1186/s13661-018-0936-8 · Zbl 1407.35083
[4] Faraci, F.; Motreanu, D.; Puglisi, D., Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Cal. Var. PDEs, 54, 1, 525-538 (2015) · Zbl 1326.35159 · doi:10.1007/s00526-014-0793-y
[5] Gasiński, L.; Papageorgiou, NS, On nonlinear elliptic hemivariational inequalities of second order, Acta Math. Sci. Ser. B (Engl. Ed.), 24, 3, 451-462 (2004) · Zbl 1078.47036
[6] Gasiński, L.; Papageorgiou, NS, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differ. Equ., 263, 1451-1476 (2017) · Zbl 1372.35111 · doi:10.1016/j.jde.2017.03.021
[7] Gasiński, L.; Winkert, P., Existence and uniqueness results for double phase problems with convection term, J. Differ. Equ., 268, 8, 4183-4193 (2020) · Zbl 1435.35172 · doi:10.1016/j.jde.2019.10.022
[8] Motreanu, D.; Motreanu, VV; Moussaoui, A., Location of nodal solutions for quasilinear elliptic equations with gradient dependence, Discrete Contin. Dyn. Syst. Ser. S, 11, 2, 293-307 (2018) · Zbl 1374.35172
[9] Guarnotta, U.; Marano, SA; Motreanu, D., On a singular Robin problem with convection terms, Adv. Nonlinear Stud., 20, 4, 895-909 (2020) · Zbl 1479.35388 · doi:10.1515/ans-2020-2093
[10] Papageorgiou, NS; Rădulescu, VD; Repovš, DD, Nonlinear elliptic inclusions with unilateral constraint and dependence on the gradient, Appl. Math. Optim., 78, 1, 1-23 (2018) · Zbl 1394.35183 · doi:10.1007/s00245-016-9392-y
[11] Faraci, F.; Puglisi, D., A singular semilinear problem with dependence on the gradient, J. Differ. Equ., 260, 4, 3327-3349 (2016) · Zbl 1333.35079 · doi:10.1016/j.jde.2015.10.031
[12] Figueiredo, GM; Madeira, GF, Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient, J. Differ. Equ., 274, 857-875 (2021) · Zbl 1455.35089 · doi:10.1016/j.jde.2020.10.033
[13] Papageorgiou, NS; Rǎdulescu, VD; Repovš, DD, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl., 136, 1-21 (2020) · Zbl 1437.35016 · doi:10.1016/j.matpur.2020.02.004
[14] Tanaka, M., Existence of a positive solution for quasilinear elliptic equations with nonlinearity including the gradient, Bound Value Probl., 2013, 173 (2013) · Zbl 1294.35029 · doi:10.1186/1687-2770-2013-173
[15] Guarnotta, U.; Marano, SA, Infinitely many solutions to singular convective Neumann systems with arbitrarily growing reactions, J. Differ. Equ., 271, 849-863 (2021) · Zbl 1455.35084 · doi:10.1016/j.jde.2020.09.024
[16] Liu, ZH; Motreanu, D.; Zeng, SD, Positive solutions for nonlinear singular elliptic equations of p-Laplacian type with dependence on the gradient, Cal. Var. PDEs, 58, 1, 22 (2019) · Zbl 1409.35076 · doi:10.1007/s00526-018-1476-x
[17] Marano, SA; Winkert, P., On a quasilinear elliptic problem with convection term and nonlinear boundary condition, Nonlinear Anal., 187, 159-169 (2019) · Zbl 1425.35053 · doi:10.1016/j.na.2019.04.008
[18] de Araujo, ALA; Faria, LFO, Positive solutions of quasilinear elliptic equations with exponential nonlinearity combined with convection term, J. Differ. Equ., 267, 8, 4589-4608 (2019) · Zbl 1421.35168 · doi:10.1016/j.jde.2019.05.006
[19] Bai, YR; Papageorgiou, NS; Zeng, SD, A singular eigenvalue problem for the Dirichlet \((p, q)\)-Laplacian, Math. Z. (2021) · Zbl 1484.35243 · doi:10.1007/s00209-021-02803-w
[20] Le, VK, A range and existence theorem for pseudomonotone perturbations of maximal monotone operators, Proc. Am. Math. Soc., 139, 5, 1645-1658 (2011) · Zbl 1216.47086 · doi:10.1090/S0002-9939-2010-10594-4
[21] Carl, S.; Le, VK, Multi-valued variational inequalities and inclusions (2021), Cham: Springer, Cham · Zbl 1462.49001 · doi:10.1007/978-3-030-65165-7
[22] Motreanu, D.; Winkert, P., Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett., 95, 78-84 (2019) · Zbl 1435.35186 · doi:10.1016/j.aml.2019.03.023
[23] Zeng, SD; Gasiński, L.; Winkert, P.; Bai, YR, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl., 501 (2021) · Zbl 1467.35159 · doi:10.1016/j.jmaa.2020.123997
[24] Zeng, SD; Bai, YR; Gasiński, L.; Winkert, P., Existence results for double phase implicit obstacle problems involving multivalued operators, Cal. Var. PDEs, 59, 5, 18 (2020) · Zbl 1453.35070
[25] Zeng, SD; Bai, YR; Gasiński, L.; Winkert, P., Convergence analysis for double phase obstacle problems with multivalued convection term, Adv. Nonlinear Anal., 10, 659-672 (2021) · Zbl 1467.35129 · doi:10.1515/anona-2020-0155
[26] Mingione, G.; Rădulescu, VD, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501, 125197 (2021) · Zbl 1467.49003 · doi:10.1016/j.jmaa.2021.125197
[27] Lê, A., Eigenvalue problems for the \(p\)-Laplacian, Nonlinear Anal., 64, 5, 1057-1099 (2006) · Zbl 1208.35015 · doi:10.1016/j.na.2005.05.056
[28] Gasiński, L.; Papageorgiou, NS, Exercises in analysis. Part 1: nonlinear analysis (2014), Heidelberg: Springer, Heidelberg · Zbl 1298.00007
[29] Gasiński, L.; Papageorgiou, NS, Nonsmooth critical point theory and nonlinear boundary value problems (2005), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 1058.58005
[30] Carl, S.; Le, VK; Motreanu, D., Nonsmooth variational problems and their inequalities (2007), New York: Springer, New York · Zbl 1109.35004 · doi:10.1007/978-0-387-46252-3
[31] Aubin, JP; Frankowska, H., Set-valued analysis (1990), Boston: Birkhäuser, Boston · Zbl 0713.49021
[32] Brézis, H., Functional analysis, Sobolev spaces and partial differential equations (2011), New York: Springer, New York · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.