×

Riemann integral operator for stationary and non-stationary processes. (English. Russian original) Zbl 1485.35151

Cybern. Syst. Anal. 57, No. 6, 918-926 (2021); translation from Kibern. Sist. Anal. 57, No. 6, 84-93 (2021).
Summary: Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A method for finding solutions to the above equations in analytical form is developed. In some cases, formulas for inverting integral representations of solutions are constructed. The conditions for solving the Cauchy problem for the axisymmetric Helmholtz equation are formulated.

MSC:

35J15 Second-order elliptic equations
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35K10 Second-order parabolic equations
35L10 Second-order hyperbolic equations
Full Text: DOI

References:

[1] Klyushin, DA; Lyashko, SI; Lyashko, NI; Bondar, OS; Tymoshenko, AA, Generalized optimization of processes of drug transport in tumors, Cybern. Syst. Analisys, 56, 5, 758-765 (2020) · Zbl 1455.35268 · doi:10.1007/s10559-02000296-0
[2] Lyashko, SI; Yaremchuk, SI; Lyashko, NI; Shupikov, AA; Bondar, ES, Optimization of arrangement of sources of physical field on fixed places, J. Autom. Inform. Sci., 52, 7, 3-18 (2020) · doi:10.1615/JAutomatInfScien.v52.i7.20
[3] A. Tymoshenko, D. Klyushin, and S. Lyashko, “Optimal control of point sources in Richards-Klute equation,” Advances in Intelligent Systems and Computing, Vol. 754, 194-203 (2019). doi:10.1007/978-3-319-91008-6_20.
[4] Sandrakov, GV; Lyashko, SI; Bondar, ES; Lyashko, NI, Modeling and optimization of microneedle systems, J. Autom. Inform. Sci., 51, 6, 1-11 (2019) · doi:10.1615/JAutomatInfScien.v51.i6.10.2019
[5] Gladky, AV, Investigation of wave processes in inhomogeneous media with imperfect contact conditions, Cybern. Syst. Analisys, 52, 2, 247-257 (2016) · Zbl 1346.76184 · doi:10.1007/s10559-016-9821-6
[6] B. Perthame, “PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic,” Applications of Mathematics, Vol. 49, Iss. 6, 539-564 (2004). · Zbl 1099.35157
[7] Lyashko, SI; Nomirovskii, DA; Sergienko, TI, Trajectory and final controllability in hyperbolic and pseudohyperbolic systems with generalized actions, Cybern. Syst. Analisys, 37, 5, 756-763 (2001) · Zbl 1037.93047 · doi:10.1023/A:1013871026026
[8] Lyashko, SI; Semenov, VV, On the controllability of linear distributed systems in classes of generalized actions, Cybern. Syst. Analisys, 37, 1, 13-32 (2001) · Zbl 1005.93009 · doi:10.1023/A:1016607831284
[9] Biler, P.; Nadzieja, T., A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math., 66, Iss. 1, 131-145 (1993) · Zbl 0818.35046 · doi:10.4064/cm-66-1-131-145
[10] Nakonechnyi, AG; Lyashko, SI, Minmax estimation theory for solutions of abstract parabolic equations, Cybern. Syst. Analisys, 31, 4, 626-630 (1995) · Zbl 0855.49016 · doi:10.1007/BF02366418
[11] S. I. Lyashko and A. A. Man’kovskii, “Simultaneous optimization of impulse and intensities in control problems for parabolic equations,” Cybernetics, Vol. 19, No. 5, 687-690 (1983). doi:10.1007/BF01068766.
[12] Alexandrovich, IM; Sydorov, MV, Differential operators specifying the solution of an elliptic iterated equation, Ukr. Math. J., 71, Iss. 3, 495-504 (2019) · Zbl 1437.35201 · doi:10.1007/s11253-019-01659-y
[13] Alexandrovich, IM; Bondar, OS; Lyashko, SI; Lyashko, NI; Sydorov, MV-S, Integral operators that determine the solution of an iterated hyperbolic-type equation, Cybern. Syst. Analisys, 56, 3, 401-409 (2020) · Zbl 1463.45055 · doi:10.1007/s10559-020-00256-3
[14] Lyashko, II; Alexandrovich, IM; Sidorov, MV-S, Riemann integral operator of stationary and nonstationary processes for an iterative axisymmetric case, Zh. Obchysl. Prykl. Matem., No., 1, 49-55 (2002)
[15] Lyashko, II; Sidorov, MV-S; Alexandrovich, IM, Inversion of some integral equations, Zh. Obchysl. Prykl. Matem., No., 2, 25-30 (2004)
[16] I. M. Aleksandrovich and M. V. Sidorov, “Differential operators defining a solution of an elliptic-type equation,” J. Math. Sci., Vol. 102, Iss. 1, 3719-3726 (2000). doi:10.1007/BF02680223.
[17] I. M. Aleksandrovich, “Differential operators determining solutions of elliptic equations,” Ukr. Math. J., Vol. 47, Iss. 12, 1811-1817 (1995). doi:10.1007/BF01060956.
[18] I. N. Aleksandrovich, “Differential operators that determine the solution of a certain class of equations of elliptic type,” Ukr. Math. J., Vol. 41, Iss. 6, 709-712 (1989). · Zbl 0699.35065
[19] R. P. Gilbert, Function Theoretic Methods in Partial Differential Equation, Acad. Press, New York-London (1969). · Zbl 0187.35303
[20] H. Bateman, A. Erdélyi, et al., Higher Transcendental Functions, Vols. 1, 2, McGraw-Hill (1953). · Zbl 0143.29202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.