×

Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. (English) Zbl 1485.26020

Summary: At first, we construct a connection between the Atangana-Baleanu and the Riemann-Liouville fractional integrals of a function with respect to a monotone function with nonsingular kernel. By examining this relationship and the iterated form of Prabhakar fractional model, we are able to find some new Hermite-Hadamard inequalities and related results on integral inequalities for the two models of fractional calculus which are defined using monotone functions with nonsingular kernels.

MSC:

26D07 Inequalities involving other types of functions
26D10 Inequalities involving derivatives and differential and integral operators
26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals
33E12 Mittag-Leffler functions and generalizations

Software:

ML

References:

[1] Abdeljawad, T., A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017) · Zbl 1368.26003
[2] Abdeljawad, T., Fractional operators with generalized Mittag-Leffler kernels and their differintegrals, Chaos Solitons Fractals, 29 (2019) · Zbl 1409.26003
[3] Abdeljawad, T., Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos Solitons Fractals, 126, 315-324 (2019) · Zbl 1448.39032
[4] Abdeljawad, T.; Al-Mdallal, Q. M., Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality, J. Comput. Appl. Math., 339, 218-230 (2018) · Zbl 1472.39006
[5] Abdeljawad, T.; Baleanu, D., Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10, 3, 1098-1107 (2017) · Zbl 1412.47086
[6] Acay, B.; Bas, E.; Abdeljawad, T., Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Solitons Fractals, 130 (2020)
[7] Anastassiou, G. A., Opial type inequalities involving Riemann-Liouville fractional derivatives of two functions with applications, Math. Comput. Model., 48, 344-374 (2008) · Zbl 1145.44300
[8] Atangana, A., Fractional Operators with Constant and Variable Order with Application to Geo-hydrology (2017), New York: Academic Press, New York
[9] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 2, 763-769 (2016)
[10] Baleanu, D.; Fernandez, A., On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59, 444-462 (2018) · Zbl 1510.34004
[11] Baleanu, D., Mohammed, P.O., Zeng, S.: Inequalities of trapezoidal type involving generalized fractional integrals. Alex. Eng. J. 10.1016/j.aej.2020.03.039
[12] Baleanu, D.; Shiri, B., Collocation methods for fractional differential equations involving non-singular kernel, Chaos Solitons Fractals, 116, 136-145 (2018) · Zbl 1442.65140
[13] Baleanu, D.; Shiri, B.; Srivastava, H. M.; Al Qurashi, M., A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel, Adv. Differ. Equ., 2018 (2018) · Zbl 1448.65062
[14] Bonyah, E.; Atangana, A.; Elsadany, A. A., A fractional model for predator-prey with omnivore, Chaos, 29 (2019) · Zbl 1406.92652
[15] Djida, J.-D.; Atangana, A.; Area, I., Numerical computation of a fractional derivative with non-local and non-singular kernel, Math. Model. Nat. Phenom., 12, 3, 4-13 (2017) · Zbl 1416.65190
[16] Dragomir, S. S.; Bhatti, M. I.; Iqbal, M.; Muddassar, M., Some new Hermite-Hadamard’s type fractional integral inequalities, J. Comput. Anal. Appl., 18, 4, 655-661 (2015) · Zbl 1326.26016
[17] Fernandez, A.; Baleanu, D., Differintegration with respect to functions in fractional models involving Mittag-Leffler functions, SSRN Electron. J. (2018) · doi:10.2139/ssrn.3275746
[18] Fernandez, A.; Baleanu, D.; Srivastava, H. M., Series representations for models of fractional calculus involving generalised Mittag-Leffler functions, Commun. Nonlinear Sci. Numer. Simul., 67, 517-527 (2019) · Zbl 1508.26006
[19] Fernandez, A., Mohammed, P.O.: Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci., 1-18 (2020). 10.1002/mma.6188
[20] Garra, R.; Garrappa, R., The Prabhakar or three parameter Mittag-Leffler function: theory and application, Commun. Nonlinear Sci. Numer. Simul., 56, 314-329 (2018) · Zbl 1524.33083
[21] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, V., Mittag-Leffler Functions, Related Topics and Applications (2014), Berlin: Springer, Berlin · Zbl 1309.33001
[22] Haubold, H. J.; Mathai, A. M.; Saxena, R. K., Mittag-Leffler functions and their applications, J. Appl. Math., 2011 (2011) · Zbl 1218.33021
[23] Hristov, J., The Craft of Fractional Modelling in Science and Engineering (2018), Basel: MDPI, Basel
[24] Jarad, F.; Abdeljawad, T.; Hammouch, Z., On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117, 16-20 (2018) · Zbl 1442.34016
[25] Kavurmaci, H.; Avci, M.; Ozdemir, M. E., New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl., 2011 (2011) · Zbl 1273.26031
[26] Khan, H.; Abdeljawad, T.; Tunc, C.; Alkhazzan, A.; Khan, A., Minkowskis inequality for the AB-fractional integral operator, J. Inequal. Appl., 2019 (2019) · Zbl 1499.26135
[27] Kilbas, A. A.; Saigo, M.; Saxena, R. K., Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct., 15, 1, 31-49 (2004) · Zbl 1047.33011
[28] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[29] Lakshmikantham, V.; Leela, S., Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations (1969), New York: Academic Press, New York · Zbl 0177.12403
[30] Liu, K.; Wang, J.; O’Regan, D., On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019) · Zbl 1499.26144
[31] Mathai, A. M.; Haubold, H. J., Mittag-Leffler functions and fractional calculus, Special Functions for Applied Scientists (2008), New York: Springer, New York · Zbl 1151.33001
[32] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), New York: Wiley, New York · Zbl 0789.26002
[33] Mohammed, P. O., Some integral inequalities of fractional quantum type, Malaya J. Mat., 4, 1, 93-99 (2016)
[34] Mohammed, P. O., Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ., Sci., 30, 2, 258-262 (2018)
[35] Mohammed, P. O., A generalized uncertain fractional forward difference equations of Riemann-Liouville type, J. Math. Res., 11, 4, 43-50 (2019)
[36] Mohammed, P.O.: Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function. Math. Methods Appl. Sci., 1-11 (2019). 10.1002/mma.5784
[37] Mohammed, P. O.; Abdeljawad, T., Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020 (2020) · Zbl 1482.26022
[38] Mohammed, P. O.; Brevik, I., A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020) · doi:10.3390/sym12040610
[39] Mohammed, P. O.; Hamasalh, F. K., New conformable fractional integral inequalities of Hermite-Hadamard type for convex functions, Symmetry, 11, 2 (2019) · Zbl 1416.26037 · doi:10.3390/sym11020263
[40] Mohammed, P. O.; Sarikaya, M. Z., Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018) · Zbl 1498.26063
[41] Mohammed, P. O.; Sarikaya, M. Z., On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020) · Zbl 1435.26027
[42] Mohammed, P. O.; Sarikaya, M. Z.; Baleanu, D., On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020) · doi:10.3390/sym12040595
[43] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), San Diego: Academic Press, San Diego · Zbl 0428.26004
[44] Osler, T. J., Fractional derivatives of a composite function, SIAM J. Math. Anal., 1, 288-293 (1970) · Zbl 0201.44201
[45] Pollard, H., The completely monotonic character of the Mittag-Leffler function \(E_{\alpha}(-x)\), Bull. Am. Math. Soc., 54, 12, 1115-1116 (1948) · Zbl 0033.35902
[46] Prabhakar, T. R., A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., 19, 7-15 (1971) · Zbl 0221.45003
[47] Qi, F.; Mohammed, P. O.; Yao, J. C.; Yao, Y. H., Generalized fractional integral inequalities of Hermite-Hadamard type for \((\alpha,m)\)-convex functions, J. Inequal. Appl., 2019 (2019) · Zbl 1499.26169
[48] Rashid, S.; Abdeljawad, T.; Jarad, F.; Noor, M. A., Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications, Mathematics, 7 (2019)
[49] Rashid, S.; Jarad, F.; Noor, M. A.; Noor, K. I.; Baleanu, D.; Liu, J.-B., On Grüss inequalities within generalized K-fractional integrals, Adv. Differ. Equ., 2020 (2020) · Zbl 1482.26040
[50] Rashid, S.; Kalsoom, H.; Hammouch, Z.; Ashraf, R.; Baleanu, D.; Chu, Y.-M., New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating h-convex functions in Hilbert space, Symmetry, 12 (2020)
[51] Rashid, S.; Noor, M. A.; Noor, K. I.; Chu, Y.-M., Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5, 3, 2629-2645 (2020) · Zbl 1484.26038
[52] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (2002), London: Taylor & Francis, London · Zbl 0998.42010
[53] Sarikaya, M. Z.; Set, E.; Yaldiz, H.; Başak, N., Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57, 2403-2407 (2013) · Zbl 1286.26018
[54] Sarikaya, M. Z.; Yildirim, H., On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17, 2, 1049-1059 (2017) · Zbl 1389.26051
[55] Shiri, B.; Baleanu, D., System of fractional differential algebraic equations with applications, Chaos Solitons Fractals, 120, 203-212 (2019) · Zbl 1448.34026
[56] Sousa, J. V.C.; Oliveira, E. C., On the Ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60, 72-91 (2018) · Zbl 1470.26015
[57] Srivastava, H. M.; Tomovski, Z., Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211, 1, 198-210 (2009) · Zbl 1432.30022
[58] Uçar, S.; Uçar, E.; Özdemir, N.; Hammouch, Z., Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Solitons Fractals, 118, 300-306 (2019) · Zbl 1442.92074
[59] Walter, W., Differential and Integral Inequalities (2012), Berlin: Springer, Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.