×

Ambiguity and incomplete information in categorical models of language. (English) Zbl 1484.91363

Duncan, Ross (ed.) et al., Proceedings of the 13th international conference on quantum physics and logic, QPL’16, Glasgow, Scotland, June 6–10, 2016. Waterloo: Open Publishing Association (OPA). Electron. Proc. Theor. Comput. Sci. (EPTCS) 236, 95-107 (2017).
Summary: We investigate notions of ambiguity and partial information in categorical distributional models of natural language. Probabilistic ambiguity has previously been studied [R. Piedeleu et al., LIPIcs – Leibniz Int. Proc. Inform. 35, 270–289 (2015; Zbl 1366.68349); R. Piedeleu, Ambiguity in categorical models of meaning. Oxford: University of Oxford (Master Thesis) (2014); D. Kartsaklis, Compositional distributional semantics with compact closed categories and Frobenius algebras. Oxford: University of Oxford (PhD Thesis) (2014)] using Selinger’s CPM construction. This construction works well for models built upon vector spaces, as has been shown in quantum computational applications. Unfortunately, it doesn’t seem to provide a satisfactory method for introducing mixing in other compact closed categories such as the category of sets and binary relations. We therefore lack a uniform strategy for extending a category to model imprecise linguistic information.
In this work we adopt a different approach. We analyze different forms of ambiguous and incomplete information, both with and without quantitative probabilistic data. Each scheme then corresponds to a suitable enrichment of the category in which we model language. We view different monads as encapsulating the informational behaviour of interest, by analogy with their use in modelling side effects in computation. Previous results of Jacobs then allow us to systematically construct suitable bases for enrichment.
We show that we can freely enrich arbitrary dagger compact closed categories in order to capture all the phenomena of interest, whilst retaining the important dagger compact closed structure. This allows us to construct a model with real convex combination of binary relations that makes non-trivial use of the scalars. Finally we relate our various different enrichments, showing that finite subconvex algebra enrichment covers all the effects under consideration.
For the entire collection see [Zbl 1434.03013].

MSC:

91F20 Linguistics
18M40 Dagger categories, categorical quantum mechanics

Citations:

Zbl 1366.68349

References:

[1] S. Abramsky & B. Coecke (2004): A Categorical Semantics of Quantum Protocols. In: 19th IEEE Sym-posium on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, IEEE Computer Society, pp. 415-425, doi:10.1109/LICS.2004.1319636. · doi:10.1109/LICS.2004.1319636
[2] M. Barr & C. Wells (2005): Toposes, Triples and Theories. Reprints in Theory and Applications of Categories 1, pp. 1-289.
[3] J. Beck (1969): Distributive Laws. In H. Appelgate, M. Barr, J. Beck, F.W. Lawvere, F. Linton, E. Manes, M. Tierney & F. Ulmer, editors: Seminar on Triples and Categorical Homotopy Theory, Lecture Notes in Mathematics 80, Springer, pp. 119-140, doi:10.1007/BFb0083084. · Zbl 0186.02902 · doi:10.1007/BFb0083084
[4] F. Borceux (1994): Handbook of Categorical Algebra. 2, Cambridge University Press, doi:10.1017/CBO9780511525872. · Zbl 0911.18001 · doi:10.1017/CBO9780511525872
[5] B. Coecke & A. Kissinger (2016): Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Book in preparation. · Zbl 1405.81001
[6] B. Coecke, M. Sadrzadeh & S. Clark (2010): Mathematical Foundations for Distributed Compositional Model of Meaning. Lambek Festschrift. Linguistic Analysis 36, pp. 345-384.
[7] S. Eilenberg & J.C. Moore (1965): Adjoint functors and triples. Illinois Journal of Mathematics 9(3), pp. 381-398. · Zbl 0135.02103
[8] T. Fritz (2009): Convex Spaces I: Definition and Examples. arXiv preprint arXiv:0903.5522.
[9] S. Gogioso (2015): A Bestiary of Sets and Relations. In Chris Heunen, Peter Selinger & Jamie Vicary, editors: Proceedings of the 12th International Workshop on Quantum Physics and Logic, Oxford, U.K., July 15-17, 2015, Electronic Proceedings in Theoretical Computer Science 195, Open Publishing Association, pp. 208-227, doi:10.4204/EPTCS.195.16. · Zbl 1477.18036 · doi:10.4204/EPTCS.195.16
[10] C. Heunen & J. Vicary (2016): Categorical Quantum Mechanics: An Introduction. Book in preparation.
[11] B. Jacobs (1994): Semantics of Weakening and Contraction. Ann. Pure Appl. Logic 69, doi:10.1016/0168-0072(94)90020-5. · Zbl 0814.03007 · doi:10.1016/0168-0072(94)90020-5
[12] B. Jacobs (2010): Convexity, Duality and Effects. In C. S. Calude & V. Sassone, editors: Theoretical Com-puter Science -6th IFIP TC 1/WG 2.2 International Conference, TCS 2010, Held as Part of WCC 2010, Brisbane, Australia, September 20-23, 2010. Proceedings, IFIP Advances in Information and Communica-tion Technology 323, Springer, pp. 1-19, doi:10.1007/978-3-642-15240-5 1. · Zbl 1202.18002 · doi:10.1007/978-3-642-15240-5_1
[13] B. Jacobs (2011): Coalgebraic Walks, in Quantum and Turing Computation. In M. Hofmann, editor: Foundations of Software Science and Computational Structures -14th International Conference, FOSSACS 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, Lecture Notes in Computer Science 6604, Springer, pp. 12-26, doi:10.1007/978-3-642-19805-2 2. · Zbl 1326.68192 · doi:10.1007/978-3-642-19805-2_2
[14] B. Jacobs (2012): Introduction to Coalgebra, Towards Mathematics of States and Observation. Book in preparation.
[15] B. Jacobs, J. Mandemaker & R. Furber (2016): The expectation monad in quantum foundations. Information and Computation, doi:10.1016/j.ic.2016.02.009. · Zbl 1350.68178 · doi:10.1016/j.ic.2016.02.009
[16] D. Kartsaklis (2014): Compositional Distributional Semantics with Compact Closed Categories and Frobe-nius Algebras. Ph.D. thesis, University of Oxford.
[17] G.M. Kelly (2005): Basic Concepts of Enriched Category Theory. Reprints in the Theory and Applications of Category Theory. · Zbl 1086.18001
[18] A. Kock (1971): Bilinearity and cartesian closed monads. Math. Scand. 29, pp. 161-174. · Zbl 0253.18006
[19] A. Kock (1972): Strong functors and monoidal monads. Archiv der Mathematik 23(1), pp. 113-120, doi:10.1007/BF01304852. · Zbl 0253.18007 · doi:10.1007/BF01304852
[20] J. Lambek (1997): Type grammar revisited. In: Logical aspects of computational linguistics, Springer, pp. 1-27. · Zbl 0934.03043
[21] H. Lindner (1979): Affine parts of monads. Archiv der Mathematik 33(1), pp. 437-443, doi:10.1007/BF01222782. · Zbl 0426.18003 · doi:10.1007/BF01222782
[22] S. MacLane (1978): Categories for the Working Mathematician, 2 edition. Graduate Texts in Mathematics 5, Springer, doi:10.1007/978-1-4757-4721-8. · doi:10.1007/978-1-4757-4721-8
[23] E.G. Manes (1976): Algebraic Theories. Graduate Texts in Mathematics 26, Springer, doi:10.1007/978-1-4612-9860-1 2. · Zbl 0353.18007 · doi:10.1007/978-1-4612-9860-1_2
[24] D. Marsden (2015): A Graph Theoretic Perspective on CPM(Rel). In Chris Heunen, Peter Selinger & Jamie Vicary, editors: Proceedings of the 12th International Workshop on Quantum Physics and Logic, Oxford, U.K., July 15-17, 2015, Electronic Proceedings in Theoretical Computer Science 195, Open Publishing As-sociation, pp. 273-284, doi:10.4204/EPTCS.195.20. · Zbl 1434.03015 · doi:10.4204/EPTCS.195.20
[25] E. Moggi (1991): Notions of computation and monads. Information and Computation 93(1), pp. 55-92, doi:10.1016/0890-5401(91)90052-4. · Zbl 0723.68073 · doi:10.1016/0890-5401(91)90052-4
[26] R. Piedeleu (2014): Ambiguity in Categorical Models of Meaning. Master’s thesis, University of Oxford.
[27] R. Piedeleu, D. Kartsaklis, B. Coecke & M. Sadrzadeh (2015): Open System Categorical Quantum Semantics in Natural Language Processing. In L. S. Moss & P. Sobocinski, editors: 6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015, June 24-26, 2015, Nijmegen, The Netherlands, LIPIcs 35, Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, pp. 270-289, doi:10.4230/LIPIcs.CALCO.2015.270. · Zbl 1366.68349 · doi:10.4230/LIPIcs.CALCO.2015.270
[28] G. D. Plotkin & J. Power (2002): Notions of Computation Determine Monads. In M. Nielsen & U. Engberg, editors: Foundations of Software Science and Computation Structures, 5th International Conference, FOS-SACS 2002. Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS · Zbl 1077.68676
[29] Grenoble, France, April 8-12, 2002, Proceedings, Lecture Notes in Computer Science 2303, Springer, pp. 342-356, doi:10.1007/3-540-45931-6 24. · doi:10.1007/3-540-45931-6_24
[30] P. Selinger (2007): Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract). Electronic Notes Theoretical Computer Science 170, pp. 139-163, doi:10.1016/j.entcs.2006.12.018. · Zbl 1277.18008 · doi:10.1016/j.entcs.2006.12.018
[31] C.C. Shan (2001): Monads for Natural Language Semantics. In K. Streignitz, editor: Proceedings of the ESSLLI-2001 Student Session, Institute for Logic, Language and Computation, University of Amsterdam, pp. 285-298.
[32] P. Wadler (1995): Monads for Functional Programming. In J. Jeuring & E. Meijer, editors: Advanced Func-tional Programming, First International Spring School on Advanced Functional Programming Techniques, Båstad, Sweden, May 24-30, 1995, Tutorial Text, Lecture Notes in Computer Science 925, Springer, pp. 24-52, doi:10.1007/3-540-59451-5 2. · doi:10.1007/3-540-59451-5_2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.