×

Cosmological bubble friction in local equilibrium. (English) Zbl 1484.83100

Summary: In first-order cosmological phase transitions, the asymptotic velocity of expanding bubbles is of crucial relevance for predicting observables like the spectrum of stochastic gravitational waves, or for establishing the viability of mechanisms explaining fundamental properties of the universe such as the observed baryon asymmetry. In these dynamic phase transitions, it is generally accepted that subluminal bubble expansion requires out-of-equilibrium interactions with the plasma which are captured by friction terms in the equations of motion for the scalar field. This has been disputed in works pointing out subluminal velocities in local equilibrium arising either from hydrodynamic effects in deflagrations or from the entropy change across the bubble wall in general situations. We argue that both effects are related and can be understood from the conservation of the entropy of the degrees of freedom in local equilibrium, leading to subluminal speeds for both deflagrations and detonations. The friction effect arises from the background field dependence of the entropy density in the plasma, and can be accounted for by simply imposing local conservation of stress-energy and including field dependent thermal contributions to the effective potential. We illustrate this with explicit calculations of dynamic and static bubbles for a first-order electroweak transition in a Standard Model extension with additional scalar fields.

MSC:

83F05 Relativistic cosmology
82B26 Phase transitions (general) in equilibrium statistical mechanics
81V22 Unified quantum theories
81V35 Nuclear physics
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76T10 Liquid-gas two-phase flows, bubbly flows
62M15 Inference from stochastic processes and spectral analysis
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
94A17 Measures of information, entropy

References:

[1] Aoki, Y.; Endrodi, G.; Fodor, Z.; Katz, S. D.; Szabo, K. K., The Order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature, 443, 675-678 (2006) · doi:10.1038/nature05120
[2] Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, Mikhail E., Is there a hot electroweak phase transition at m_H ≳ m_W?, Phys. Rev. Lett., 77, 2887-2890 (1996) · doi:10.1103/PhysRevLett.77.2887
[3] Witten, Edward, Cosmic Separation of Phases, Phys. Rev. D, 30, 272-285 (1984) · doi:10.1103/PhysRevD.30.272
[4] Hogan, C. J., Gravitational radiation from cosmological phase transitions, Mon. Not. Roy. Astron. Soc., 218, 629-636 (1986)
[5] Caprini, Chiara; Figueroa, Daniel G., Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav., 35 (2018) · Zbl 1409.83039 · doi:10.1088/1361-6382/aac608
[6] Crowder, Jeff; Cornish, Neil J., Beyond LISA: Exploring future gravitational wave missions, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.083005
[7] Seto, Naoki; Kawamura, Seiji; Nakamura, Takashi, Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett., 87 (2001) · doi:10.1103/PhysRevLett.87.221103
[8] LISA Collaboration; Amaro-Seoane, Pau, Laser Interferometer Space Antenna (2017)
[9] Kuzmin, V. A.; Rubakov, V. A.; Shaposhnikov, M. E., On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B, 155, 36 (1985) · doi:10.1016/0370-2693(85)91028-7
[10] Garbrecht, Björn, Why is there more matter than antimatter? Calculational methods for leptogenesis and electroweak baryogenesis, Prog. Part. Nucl. Phys., 110 (2020) · doi:10.1016/j.ppnp.2019.103727
[11] Heckler, Andrew F., The Effects of electroweak phase transition dynamics on baryogenesis and primordial nucleosynthesis, Phys. Rev. D, 51, 405-428 (1995) · doi:10.1103/PhysRevD.51.405
[12] Dine, Michael; Leigh, Robert G.; Huet, Patrick Y.; Linde, Andrei D.; Linde, Dmitri A., Towards the theory of the electroweak phase transition, Phys. Rev. D, 46, 550-571 (1992) · doi:10.1103/PhysRevD.46.550
[13] Liu, Bao-Hua; McLerran, Larry D.; Turok, Neil, Bubble nucleation and growth at a baryon number producing electroweak phase transition, Phys. Rev. D, 46, 2668-2688 (1992) · doi:10.1103/PhysRevD.46.2668
[14] Moore, Guy D.; Prokopec, Tomislav, Bubble wall velocity in a first order electroweak phase transition, Phys. Rev. Lett., 75, 777-780 (1995) · doi:10.1103/PhysRevLett.75.777
[15] Moore, Guy D.; Prokopec, Tomislav, How fast can the wall move? A Study of the electroweak phase transition dynamics, Phys. Rev. D, 52, 7182-7204 (1995) · doi:10.1103/PhysRevD.52.7182
[16] Khlebnikov, S. Yu., Fluctuation-dissipation formula for bubble wall velocity, Phys. Rev. D, 46, 3223-3226 (1992) · doi:10.1103/PhysRevD.46.R3223
[17] Arnold, Peter Brockway, One loop fluctuation-dissipation formula for bubble wall velocity, Phys. Rev. D, 48, 1539-1545 (1993) · doi:10.1103/PhysRevD.48.1539
[18] Konstandin, Thomas; Nardini, Germano; Rues, Ingo, From Boltzmann equations to steady wall velocities, JCAP, 09 (2014) · doi:10.1088/1475-7516/2014/09/028
[19] John, P.; Schmidt, M. G., Do stops slow down electroweak bubble walls?, Nucl. Phys. B, 598, 291-305 (2001) · doi:10.1016/S0550-3213(00)00768-9
[20] Bodeker, Dietrich; Moore, Guy D., Can electroweak bubble walls run away?, JCAP, 05 (2009) · doi:10.1088/1475-7516/2009/05/009
[21] Kozaczuk, Jonathan, Bubble Expansion and the Viability of Singlet-Driven Electroweak Baryogenesis, JHEP, 10, 135 (2015) · doi:10.1007/JHEP10(2015)135
[22] Höche, Stefan; Kozaczuk, Jonathan; Long, Andrew J.; Turner, Jessica; Wang, Yikun, Towards an all-orders calculation of the electroweak bubble wall velocity, JCAP, 03 (2021) · Zbl 1484.83128
[23] Ignatius, J.; Kajantie, K.; Kurki-Suonio, H.; Laine, M., The growth of bubbles in cosmological phase transitions, Phys. Rev. D, 49, 3854-3868 (1994) · doi:10.1103/PhysRevD.49.3854
[24] Kurki-Suonio, H.; Laine, M., Real time history of the cosmological electroweak phase transition, Phys. Rev. Lett., 77, 3951-3954 (1996) · doi:10.1103/PhysRevLett.77.3951
[25] Espinosa, Jose R.; Konstandin, Thomas; No, Jose M.; Servant, Geraldine, Energy Budget of Cosmological First-order Phase Transitions, JCAP, 06 (2010) · doi:10.1088/1475-7516/2010/06/028
[26] Megevand, Ariel; Sanchez, Alejandro D., Detonations and deflagrations in cosmological phase transitions, Nucl. Phys. B, 820, 47-74 (2009) · Zbl 1194.83119 · doi:10.1016/j.nuclphysb.2009.05.007
[27] Megevand, Ariel; Sanchez, Alejandro D., Velocity of electroweak bubble walls, Nucl. Phys. B, 825, 151-176 (2010) · Zbl 1196.81264 · doi:10.1016/j.nuclphysb.2009.09.019
[28] Huber, Stephan J.; Sopena, Miguel, The bubble wall velocity in the minimal supersymmetric light stop scenario, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.103507
[29] Huber, Stephan J.; Sopena, Miguel, An efficient approach to electroweak bubble velocities (2013)
[30] Turok, N., Electroweak bubbles: Nucleation and growth, Phys. Rev. Lett., 68, 1803-1806 (1992) · doi:10.1103/PhysRevLett.68.1803
[31] Bodeker, Dietrich; Moore, Guy D., Electroweak Bubble Wall Speed Limit, JCAP, 05 (2017) · Zbl 1515.83302 · doi:10.1088/1475-7516/2017/05/025
[32] Konstandin, Thomas; No, Jose M., Hydrodynamic obstruction to bubble expansion, JCAP, 02 (2011) · doi:10.1088/1475-7516/2011/02/008
[33] Barroso Mancha, Marc; Prokopec, Tomislav; Swiezewska, Bogumila, Field-theoretic derivation of bubble-wall force, JHEP, 01, 070 (2021) · Zbl 1459.85004 · doi:10.1007/JHEP01(2021)070
[34] Gyulassy, M.; Kajantie, K.; Kurki-Suonio, H.; McLerran, Larry D., Deflagrations and Detonations as a Mechanism of Hadron Bubble Growth in Supercooled Quark Gluon Plasma, Nucl. Phys. B, 237, 477-501 (1984) · doi:10.1016/0550-3213(84)90004-X
[35] Piscopo, Maria Laura; Spannowsky, Michael; Waite, Philip, Solving differential equations with neural networks: Applications to the calculation of cosmological phase transitions, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.016002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.