×

Complexity for holographic superconductors with the nonlinear electrodynamics. (English) Zbl 1484.82074

Summary: We systematically study the complexity of a strip-shaped subregion in a fully backreacted holographic model of a superconductor with the nonlinear electrodynamics by the “complexity=volume” (CV) conjecture, and compare it with the holographic entanglement entropy. We consider three types of typical nonlinear electrodynamics and find that the holographic complexity can be utilized as a good probe of the superconductor phase transition in the nonlinear electrodynamics like the holographic entanglement entropy does. For the operator \(\mathcal{O}_-\), the complexity decreases (or increases) monotonically as the absolute value of the nonlinear parameter \(|b|\) grows in the superconducting (or normal) phase, which is the opposite of the behavior of the holographic entanglement entropy, and this property holds for various types of the nonlinear electrodynamics. For the operator \(\mathcal{O}_+\), in the superconducting phase, it is interesting to note that the complexity is a monotonic decreasing function of \(|b|\) for the Logarithmic nonlinear electrodynamics (LNE), but in systems with the Born-Infeld nonlinear electrodynamics (BINE) and Exponential nonlinear electrodynamics (ENE), as the parameter \(|b|\) increases, the complexity first decreases and arrives at its minimum at some threshold, then increases monotonously. Whereas the non-monotonic variation of the holographic entanglement entropy can be seen in all the three types of the nonlinear electrodynamics, concretely, it first rises, then descends with larger \(|b|\), and has a peak at the inflection point. Furthermore, comparing with the BINE and LNE, we find that the ENE has stronger effect on the condensation formation, the subregion complexity and the entanglement entropy of the holographic superconductors with backreaction.

MSC:

82D55 Statistical mechanics of superconductors
78A60 Lasers, masers, optical bistability, nonlinear optics

References:

[1] Maldacena, J., Adv. Theor. Math. Phys.. Adv. Theor. Math. Phys., Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[2] Witten, E., Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[3] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[4] Hartnoll, S. A.; Herzog, C. P.; Horowitz, G. T., Phys. Rev. Lett., 101, Article 031601 pp. (2008) · Zbl 1404.82086
[5] Hartnoll, S. A.; Herzog, C. P.; Horowitz, G. T., J. High Energy Phys., 0812, Article 015 pp. (2008)
[6] Horowitz, G. T., Lect. Notes Phys., 828, 313 (2011)
[7] Cai, R. G.; Li, L.; Li, L. F.; Yang, R. Q., Sci. China, Phys. Mech. Astron., 58, 6, Article 060401 pp. (2015)
[8] Born, M.; Infeld, L., Proc. R. Soc. Lond. A, 144, 425 (1934) · Zbl 0008.42203
[9] Gibbons, G. W.; Rasheed, D. A., Nucl. Phys. B, 454, 185 (1995) · Zbl 0925.83031
[10] Jing, J. L.; Chen, S. B., Phys. Lett. B, 686, 68 (2010)
[11] Escobar, C. A.; Potting, R.
[12] Heisenberg, W.; Euler, H., Z. Phys., 98, 714 (1936) · JFM 62.1002.03
[13] Soleng, H. H., Phys. Rev. D, 52, 6178 (1995)
[14] Hendi, S. H., J. High Energy Phys., 03, Article 065 pp. (2012); Hendi, S. H.; Sheykhi, A., Phys. Rev. D, 88, Article 044044 pp. (2013)
[15] Hendi, S. H., Ann. Phys., 333, 282 (2013) · Zbl 1284.83060
[16] Hendi, S. H., Ann. Phys., 346, 42 (2014) · Zbl 1342.83171
[17] Boillat, G., J. Math. Phys., 11, 941 (1970); Boillat, G., J. Math. Phys., 11, 1482 (1970) · Zbl 0194.41602
[18] Gibbons, G. W.; Rasheed, D. A., Nucl. Phys. B, 454, 185 (1995) · Zbl 0925.83031
[19] Gangopadhyay, S.; Roychowdhury, D., J. High Energy Phys., 05, Article 002 pp. (2012)
[20] Zhao, Z. X.; Pan, Q. Y.; Chen, S. B.; Jing, J. L., Nucl. Phys. B, 871, 98 (2013) · Zbl 1262.82057
[21] Liu, Y. Q.; Gong, Y. G.; Wang, B., J. High Energy Phys., 02, Article 116 pp. (2016)
[22] Lai, C. Y.; Pan, Q. Y.; Jing, J. L.; Wang, Y. J., Phys. Lett. B, 749, 437 (2015) · Zbl 1364.82070
[23] Sheykhi, A.; Shaker, F., Int. J. Mod. Phys. D, 26, Article 1750050 pp. (2017) · Zbl 1367.83079
[24] Sheykhi, A.; Asl, D. H.; Dehyadegari, A., Phys. Lett. B, 781, 139 (2018)
[25] Ghotbabadi, B. B.; Zangeneh, M. K.; Sheykhi, A., Eur. Phys. J. C, 78, 381 (2018)
[26] Mohammadi, M.; Sheykhi, A., Phys. Rev. D, 100, Article 086012 pp. (2019)
[27] Huang, Y. H.; Pan, Q. Y.; Qian, W. L.; Jing, J. L.; Wang, S. L., Sci. China, Phys. Mech. Astron., 63, Article 230411 pp. (2020)
[28] Mohammadi, M.; Sheykhi, A., Eur. Phys. J. C, 80, 928 (2020)
[29] Ryu, S.; Takayanagi, T., Phys. Rev. Lett., 96, Article 181602 pp. (2006) · Zbl 1228.83110
[30] Ryu, S.; Takayanagi, T., J. High Energy Phys., 0608, Article 045 pp. (2006)
[31] Albash, T.; Johnson, C. V., J. High Energy Phys., 1205, Article 079 pp. (2012)
[32] Cai, R. G.; He, S.; Li, L.; Zhang, Y. L., J. High Energy Phys., 1207, Article 088 pp. (2012)
[33] Cai, R. G.; He, S.; Li, L.; Zhang, Y. L., J. High Energy Phys., 1207, Article 027 pp. (2012)
[34] Cai, R. G.; He, S.; Li, L.; Li, L. F., J. High Energy Phys., 1210, Article 107 pp. (2012)
[35] Peng, Y.; Pan, Q. Y., J. High Energy Phys., 1406, Article 011 pp. (2014)
[36] Yao, W. P.; Jing, J. L., Nucl. Phys. B, 889, 109 (2014) · Zbl 1326.82031
[37] Yao, W. P.; Jing, J. L., Phys. Lett. B, 759, 533 (2016) · Zbl 1367.78003
[38] Garca-Garca, A. M.; Romero-Bermdez, A., J. High Energy Phys., 1509, Article 033 pp. (2015)
[39] Peng, Y., Phys. Lett. B, 750, 420 (2015) · Zbl 1364.81195
[40] Momeni, D.; Gholizade, H.; Raza, M.; Myrzakulov, R., Phys. Lett. B, 747, 417 (2015) · Zbl 1369.81112
[41] Susskind, L., Fortschr. Phys., 64, 49 (2016) · Zbl 1429.81021
[42] Susskind, L., Fortschr. Phys., 64, 24 (2016) · Zbl 1429.81019
[43] Stanford, D.; Susskind, L., Phys. Rev. D, 90, Article 126007 pp. (2014)
[44] Brown, A. R.; Roberts, D. A.; Susskind, L.; Swingle, B.; Zhao, Y., Phys. Rev. Lett., 116, Article 191301 pp. (2016)
[45] Brown, A. R.; Roberts, D. A.; Susskind, L.; Swingle, B.; Zhao, Y., Phys. Rev. D, 93, Article 086006 pp. (2016)
[46] Alishahiha, M., Phys. Rev. D, 92, Article 126009 pp. (2015)
[47] Momeni, D.; Hosseini Mansoori, S. A.; Myrzakulov, R., Phys. Lett. B, 756, 354 (2016) · Zbl 1400.81165
[48] Kord Zangeneh, M.; Ong, Y. C.; Wang, B., Phys. Lett. B, 771, 235 (2017) · Zbl 1372.81022
[49] Chakraborty, A.
[50] Fujita, M., Prog. Theor. Exp. Phys., 063, B04 (2019)
[51] Guo, H.; Kuang, X. M.; Wang, B., Phys. Lett. B, 797, Article 134879 pp. (2019)
[52] Shi, Y.; Pan, Q. Y.; Jing, J. L., Eur. Phys. J. C, 81, 228 (2021)
[53] Ghodrati, M., Phys. Rev. D, 98, Article 106011 pp. (2018)
[54] Shi, Y.; Pan, Q. Y.; Jing, J. L., Eur. Phys. J. C, 80, 1100 (2020)
[55] Yang, R. Q.; Jeong, H. S.; Niu, C.; Kim, K. Y., J. High Energy Phys., 04, Article 146 pp. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.