×

Calculating four-loop corrections in QCD. (English) Zbl 1484.81099

Bluemlein, Johannes (ed.) et al., Anti-differentiation and the calculation of Feynman amplitudes. Selected papers based on the presentations at the conference, Zeuthen, Germany, October 2020. Cham: Springer. Texts Monogr. Symb. Comput., 321-334 (2021).
Summary: We review the current status of perturbative corrections in QCD at four loops for scattering processes with space- and time-like kinematics at colliders, with specific focus on deep-inelastic scattering and electron-positron annihilation. The calculations build on the parametric reduction of loop and phase space integrals up to four-loop order using computer algebra programs such as Form, designed for large scale computations.
For the entire collection see [Zbl 1475.81004].

MSC:

81V05 Strong interaction, including quantum chromodynamics
81Q15 Perturbation theories for operators and differential equations in quantum theory
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering
81-08 Computational methods for problems pertaining to quantum theory

Software:

FORM

References:

[1] J. Blümlein, D.J. Broadhurst, J.A.M. Vermaseren, Comput. Phys. Commun. 181, 582 (2010). arXiv:0907.2557 · Zbl 1221.11183
[2] A. Gehrmann-De Ridder, T. Gehrmann, G. Heinrich, Nucl. Phys. B 682, 265 (2004). arXiv:hep-ph/0311276 · Zbl 1045.81558
[3] R.N. Lee, A.V. Smirnov, V.A. Smirnov, Nucl. Phys. B 856, 95 (2012). arXiv:1108.0732 · Zbl 1246.81057
[4] T. van Ritbergen, A.N. Schellekens, J.A.M. Vermaseren, Int. J. Mod. Phys. A 14, 41 (1999). arXiv:hep-ph/9802376 · Zbl 0924.22017
[5] J. Davies, A. Vogt, B. Ruijl, T. Ueda, J.A.M. Vermaseren, Nucl. Phys. B 915, 335 (2017). arXiv:1610.07477 · Zbl 1354.81052
[6] M. Czakon, Nucl. Phys. B 710, 485 (2005). arXiv:hep-ph/0411261 · Zbl 1115.81400
[7] A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691, 129 (2004). arXiv:hep-ph/0404111 · Zbl 1109.81374
[8] S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101 (2004). arXiv:hep-ph/0403192 · Zbl 1149.81371
[9] A. Mitov, S. Moch, A. Vogt, Phys. Lett. B 638, 61 (2006). arXiv:hep-ph/0604053
[10] S. Moch, A. Vogt, Phys. Lett. B 659, 290 (2008). arXiv:0709.3899
[11] A.A. Almasy, S. Moch, A. Vogt, Nucl. Phys. B 854, 133 (2012). arXiv:1107.2263
[12] H. Chen, T.-Z. Yang, H.X. Zhu, Y.J. Zhu, Chin. Phys. C 45, 043101 (2021). arXiv:2006.10534
[13] W.L. van Neerven, E.B. Zijlstra, Phys. Lett. B 272, 127 (1991)
[14] E.B. Zijlstra, W.L. van Neerven, Phys. Lett. B 273, 476 (1991)
[15] S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 573, 853 (2000). arXiv:hep-ph/9912355
[16] P.J. Rijken, W.L. van Neerven, Phys. Lett. B 386, 422 (1996). arXiv:hep-ph/9604436
[17] P.J. Rijken, W.L. van Neerven, Nucl. Phys. B 487, 233 (1997). arXiv:hep-ph/9609377
[18] P.J. Rijken, W.L. van Neerven, Phys. Lett. B 392, 207 (1997). arXiv:hep-ph/9609379
[19] A. Mitov, S.-O. Moch, Nucl. Phys. B 751, 18 (2006). arXiv:hep-ph/0604160
[20] A. Accardi et al., Eur. Phys. J. C 76, 471 (2016). arXiv:1603.08906
[21] D. Boer et al., (2011). arXiv:1108.1713
[22] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016). arXiv:1212.1701
[23] A. Blondel et al., Standard model theory for the FCC-ee Tera-Z stage, in Mini Workshop on Precision EW and QCD Calculations for the FCC Studies : Methods and Techniques, CERN Yellow Reports: Monographs Vol. 3/2019, Geneva, 2018, CERN. arXiv:1809.01830
[24] T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, Phys. Lett. B 400, 379 (1997). arXiv:hep-ph/9701390
[25] P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Phys. Rev. Lett. 118, 082002 (2017). arXiv:1606.08659
[26] F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren, A. Vogt, JHEP 02, 090 (2017). arXiv:1701.01404
[27] T. Luthe, A. Maier, P. Marquard, Y. Schroder, JHEP 10, 166 (2017). arXiv:1709.07718
[28] J.A.M. Vermaseren, A. Vogt, S. Moch, Nucl. Phys. B 724, 3 (2005). arXiv:hep-ph/0504242
[29] S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 813, 220 (2009). arXiv:0812.4168
[30] B. Ruijl, T. Ueda, J.A.M. Vermaseren, J. Davies, A. Vogt, PoS LL2016, 071 (2016). arXiv:1605.08408
[31] G. Das, S.-O. Moch, A. Vogt, JHEP 03, 116 (2020). arXiv:1912.12920
[32] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren, A. Vogt, JHEP 10, 041 (2017). arXiv:1707.08315
[33] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren, A. Vogt, Phys. Lett. B 782, 627 (2018). arXiv:1805.09638
[34] F. Herzog et al., Phys. Lett. B 790, 436 (2019). arXiv:1812.11818
[35] A.J. Buras, Rev. Mod. Phys. 52, 199 (1980)
[36] P. Nogueira, J. Comput. Phys. 105, 279 (1993) · Zbl 0782.68091
[37] G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B 44, 189 (1972)
[38] F.V. Tkachov, Phys. Lett. B 100, 65 (1981)
[39] K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981)
[40] B. Ruijl, T. Ueda, J.A.M. Vermaseren, Comput. Phys. Commun. 253, 107198 (2020). arXiv:1704.06650
[41] V. Magerya, A. Pikelner, JHEP 12, 026 (2019). arXiv:1910.07522
[42] P.A. Baikov, K.G. Chetyrkin, Nucl. Phys. B 837, 186 (2010). arXiv:1004.1153
[43] J.A.M. Vermaseren, (2000). arXiv:math-ph/0010025
[44] J. Kuipers, T. Ueda, J.A.M. Vermaseren, J. Vollinga, Comput. Phys. Commun. 184, 1453 (2013). arXiv:1203.6543 · Zbl 1317.68286
[45] B. Ruijl, T. Ueda, J. Vermaseren, (2017). arXiv:1707.06453
[46] M. Tentyukov, J.A.M. Vermaseren, Comput. Phys. Commun. 181, 1419 (2010). arXiv:hep-ph/0702279
[47] V.N. Velizhanin, Nucl. Phys. B 864, 113 (2012). arXiv:1203.1022
[48] J.A.M. Vermaseren, Int. J. Mod. Phys. A 14, 2037 (1999). arXiv:hep-ph/9806280
[49] J. Blümlein, S. Kurth, Phys. Rev. D 60, 014018 (1999). arXiv:hep-ph/9810241
[50] A.K. Lenstra, H.W. Lenstra, L. Lovász, Mathematische Annalen 261, 515 (1982) · Zbl 0488.12001
[51] K. Matthews, (unpublished), summarized in [ 52]; see pp. 16/17
[52] J.H. Silverman, Des. Codes Cryptography 20, 5 (2000) · Zbl 0948.11049
[53] http://www.numbertheory.org/calc/krm_calc.html
[54] F. Herzog, B. Ruijl, JHEP 05, 037 (2017). arXiv:1703.03776
[55] K.G. Chetyrkin, F.V. Tkachov, Phys. Lett. B 114, 340 (1982)
[56] K.G. Chetyrkin, V.A. Smirnov, Phys. Lett. B 144, 419 (1984)
[57] K.G. Chetyrkin, (2017). arXiv:1701.08627
[58] P. Nason, B.R. Webber, Nucl. Phys. B 421, 473 (1994) [Erratum: Nucl. Phys.B 480, 755 (1996)]
[59] C. Anastasiou, K. Melnikov, Nucl. Phys. B 646, 220 (2002). arXiv:hep-ph/0207004
[60] O. Gituliar, V. Magerya, A. Pikelner, JHEP 06, 099 (2018). arXiv:1803.09084
[61] G. Heinrich, T. Huber, D. Maitre, Phys. Lett. B 662, 344 (2008). arXiv:0711.3590
[62] G. Heinrich, T. Huber, D.A. Kosower, V.A. Smirnov, Phys. Lett. B 678, 359 (2009). arXiv:0902.3512
[63] R.N. Lee, A.V. Smirnov, V.A. Smirnov, JHEP 04, 020 (2010). arXiv:1001.2887
[64] O.V. Tarasov, Phys. Rev. D 54, 6479 (1996). arXiv:hep-th/9606018
[65] O.V. Tarasov, Nucl. Phys. B Proc. Suppl. 89, 237 (2000). arXiv:hep-ph/0102271
[66] R.N. Lee, Nucl. Phys. B 830, 474 (2010). arXiv:0911.0252
[67] H.R.P. Ferguson, D.H. Bailey, S. Arno, Math. Comput. 68, 351 (1999) · Zbl 0927.11055
[68] R.E. Cutkosky, J. Math. Phys. 1, 429 (1960) · Zbl 0122.22605
[69] G. ’t Hooft, M.J.G. Veltman, NATO Sci. Ser. B 4, 177 (1974)
[70] O. Gituliar, JHEP 02, 017 (2016). arXiv:1512.02045
[71] O. Gituliar, S. Moch, Acta Phys. Polon. B 46, 1279 (2015). arXiv:1505.02901
[72] A.V. Kotikov, Phys. Lett. B 254, 158 (1991)
[73] A.V. Kotikov, Phys. Lett. B 267, 123 (1991) [Erratum: Phys. Lett. B 295, 409-409 (1992)]
[74] J.M. Henn, Phys. Rev. Lett. 110, 251601 (2013). arXiv:1304.1806
[75] R.N. Lee, JHEP 04, 108 (2015). arXiv:1411.0911
[76] R.N. Lee, A.A. Pomeransky, (2017). arXiv:1707.07856
[77] O. Gituliar, V. Magerya, Comput. Phys. Commun. 219, 329 (2017). arXiv:1701.04269
[78] O. Gituliar, V. Magerya, PoS LL2016, 030 (2016). arXiv:1607.00759
[79] https://github.com/magv/fuchsia
[80] V. Magerya, (2021). PhD thesis (Universität Hamburg)
[81] R.N. Lee, K.T. Mingulov, (2017). arXiv:1712.05173
[82] C.G. Bollini, J.J. Giambiagi, Nuovo Cim. B 12, 20 (1972)
[83] E.B. Zijlstra, W.L. van Neerven, Nucl. Phys. B 383, 525 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.