×

Homotopic digital rigid motion: an optimization approach on cellular complexes. (English) Zbl 1484.68265

Lindblad, Joakim (ed.) et al., Discrete geometry and mathematical morphology. First international joint conference, DGMM 2021, Uppsala, Sweden, May 24–27, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12708, 189-201 (2021).
Summary: Topology preservation is a property of rigid motions in \({\mathbb R^2}\), but not in \({\mathbb{Z}}^2\). In this article, given a binary object \({\mathsf{X}} \subset{\mathbb{Z}}^2\) and a rational rigid motion \(\mathcal{R} \), we propose a method for building a binary object \(\mathsf{X}_{\mathcal{R}}\subset \mathbb{Z}^2\) resulting from the application of \({\mathcal{R}}\) on a binary object \(\mathsf{X}\). Our purpose is to preserve the homotopy type between \(\mathsf{X}\) and \(\mathsf X_{\mathcal R}\). To this end, we formulate the construction of \(\mathsf X_{\mathcal R}\) from \(\mathsf X\) as an optimization problem in the space of cellular complexes with the notion of collapse on complexes. More precisely, we define a cellular space \(\mathbb H\) by superimposition of two cubical spaces \(\mathbb F\) and \(\mathbb G\) corresponding to the canonical Cartesian grid of \(\mathbb Z^2\) where \(\mathsf X\) is defined, and the Cartesian grid induced by the rigid motion \({\mathcal R}\), respectively. The object \(\mathsf X_{\mathcal R}\) is then computed by building a homotopic transformation within the space \(\mathbb H\), starting from the cubical complex in \(\mathbb G\) resulting from the rigid motion of \(\mathsf X\) with respect to \({\mathcal R}\) and ending at a complex fitting \(\mathsf X_{\mathcal R}\) in \(\mathbb F\) that can be embedded back into \(\mathbb Z^2\).
For the entire collection see [Zbl 1476.68014].

MSC:

68U03 Computational aspects of digital topology
54H30 Applications of general topology to computer science (e.g., digital topology, image processing)
55U10 Simplicial sets and complexes in algebraic topology
68U10 Computing methodologies for image processing

References:

[1] Andres, É.: The quasi-shear rotation. In: DGCI, pp. 307-314 (1996) · Zbl 1541.68377
[2] Andres, É., Dutt, M., Biswas, A., Largeteau-Skapin, G., Zrour, R.: Digital two-dimensional bijective reflection and associated rotation. In: DGCI, pp. 3-14 (2019) · Zbl 1522.68620
[3] Anglin, WS, Using Pythagorean triangles to approximate angles, Am. Math. Monthly, 95, 540-541 (1988) · Zbl 0655.10014 · doi:10.1080/00029890.1988.11972043
[4] Baudrier, É.; Mazo, L., Combinatorics of the Gauss digitization under translation in 2D, J. Math. Imaging Vision, 61, 224-236 (2019) · Zbl 1431.52021 · doi:10.1007/s10851-018-0846-5
[5] Berthé, V.; Nouvel, B., Discrete rotations and symbolic dynamics, Theoret. Comput. Sci., 380, 276-285 (2007) · Zbl 1115.68119 · doi:10.1016/j.tcs.2007.03.032
[6] Bloch, I.; Pescatore, J.; Garnero, L., A new characterization of simple elements in a tetrahedral mesh, Graphical Models, 67, 260-284 (2005) · Zbl 1102.68670 · doi:10.1016/j.gmod.2004.12.001
[7] Blot, V., Coeurjolly, D.: Quasi-affine transformation in higher dimension. In: DGCI, pp. 493-504 (2009) · Zbl 1261.68147
[8] Couprie, M.; Bertrand, G., New characterizations of simple points in 2D, 3D, and 4D discrete spaces, IEEE Trans. Pattern Anal. Mach. Intell., 31, 637-648 (2009) · doi:10.1109/TPAMI.2008.117
[9] Jacob, M.A., Andres, É.: On discrete rotations. In: DGCI, pp. 161-174 (1995)
[10] Jacob-Da Col, M., Mazo, L.: nD quasi-affine transformations. In: DGCI, pp. 337-348 (2016) · Zbl 1475.68409
[11] Kovalevsky, VA, Finite topology as applied to image analysis, Comput Vision Graphics Image Process., 46, 141-161 (1989) · doi:10.1016/0734-189X(89)90165-5
[12] Mazo, L.; Passat, N.; Couprie, M.; Ronse, C., Paths, homotopy and reduction in digital images, Acta Applicandae Mathematicae, 113, 167-193 (2011) · Zbl 1206.68337 · doi:10.1007/s10440-010-9591-5
[13] Mazo, L., Multi-scale arithmetization of linear transformations, J. Math. Imag. Vision, 61, 432-442 (2019) · Zbl 1444.03189 · doi:10.1007/s10851-018-0853-6
[14] Mazo, L.; Baudrier, É., Object digitization up to a translation, J. Comput. Syst. Sci., 95, 193-203 (2018) · Zbl 1390.68724 · doi:10.1016/j.jcss.2017.08.001
[15] Mazo, L.; Passat, N.; Couprie, M.; Ronse, C., Digital imaging: a unified topological framework, J. Math. Imaging Vision, 44, 19-37 (2012) · Zbl 1255.68254 · doi:10.1007/s10851-011-0308-9
[16] Ngo, P.; Kenmochi, Y.; Passat, N.; Talbot, H., Topology-preserving conditions for 2D digital images under rigid transformations, J. Math. Imaging Vision, 49, 418-433 (2014) · Zbl 1291.68421 · doi:10.1007/s10851-013-0474-z
[17] Ngo, P., Passat, N., Kenmochi, Y., Debled-Rennesson, I.: Convexity invariance of voxel objects under rigid motions. In: ICPR, pp. 1157-1162 (2018) · Zbl 1430.94031
[18] Ngo, P.; Passat, N.; Kenmochi, Y.; Talbot, H., Topology-preserving rigid transformation of 2D digital images, IEEE Trans. Image Process., 23, 885-897 (2014) · Zbl 1374.94278 · doi:10.1109/TIP.2013.2295751
[19] Nouvel, B., Rémila, E.: Characterization of bijective discretized rotations. In: IWCIA, pp. 248-259 (2004) · Zbl 1113.68599
[20] Nouvel, B., Rémila, E.: Incremental and transitive discrete rotations. In: IWCIA, pp. 199-213 (2006)
[21] Passat, N., Kenmochi, Y., Ngo, P., Pluta, K.: Rigid motions in the cubic grid: a discussion on topological issues. In: DGCI, pp. 127-140 (2019) · Zbl 1522.68705
[22] Pluta, K., Moroz, G., Kenmochi, Y., Romon, P.: Quadric arrangement in classifying rigid motions of a 3D digital image. In: CASC, pp. 426-443 (2016) · Zbl 1453.94015
[23] Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijectivity certification of 3D digitized rotations. In: CTIC, pp. 30-41 (2016) · Zbl 1339.68277
[24] Pluta, K.; Romon, P.; Kenmochi, Y.; Passat, N., Bijective digitized rigid motions on subsets of the plane, J. Math. Imaging Vision, 59, 84-105 (2017) · Zbl 1420.68227 · doi:10.1007/s10851-017-0706-8
[25] Roussillon, T., Coeurjolly, D.: Characterization of bijective discretized rotations by Gaussian integers. Technical report (2016). https://hal.archives-ouvertes.fr/hal-01259826
[26] Thibault, Y.; Sugimoto, A.; Kenmochi, Y., 3D discrete rotations using hinge angles, Theoret. Comput. Sci., 412, 1378-1391 (2011) · Zbl 1207.68425 · doi:10.1016/j.tcs.2010.10.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.