×

Three effective preconditioners for double saddle point problem. (English) Zbl 1484.65056

Summary: In this paper, we mainly propose three preconditioners for solving double saddle point problems, which arise from some practical problems. Firstly, the solvability of this kind of problem is investigated under suitable assumption. Next, we prove that all the eigenvalues of the three preconditioned matrices are \(1 \). Furthermore, we analyze the eigenvector distribution and the upper bound of the minimum polynomial degree of the corresponding preconditioned matrix. Finally, numerical experiments are carried to show the effectiveness of the proposed preconditioners.

MSC:

65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65F50 Computational methods for sparse matrices

References:

[1] O. Axelsson, <i>Iterative Solution Methods</i>, Cambridge University Press, 1994. · Zbl 0795.65014
[2] Z, Motivations and realizations of Krylov subspace methods for large sparse linear systems, J. Comput. Appl. Math., 283, 71-78 (2015) · Zbl 1311.65032 · doi:10.1016/j.cam.2015.01.025
[3] F, Block preconditioners for saddle pint systems arising from liquid crystal directors modeling, Calcolo, 55, 29 (2018) · Zbl 1416.65079 · doi:10.1007/s10092-018-0271-6
[4] F, Iterative methods for double saddle point systems, SIAM J. Matrix Anal. Appl., 39, 602-621 (2018)
[5] M. Benzi, F. P. A. Beik, Uzawa-type and augmented Lagrangian methods for double saddle point Systems, In: D. Bini, F. Di Benedetto, E. Tyrtyshnikov, M. Van Barel, <i>Structured Matrices in Numerical Linear Algebra</i>, Springer, 2019. · Zbl 1442.65038
[6] M, Numercial solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034 · doi:10.1017/S0962492904000212
[7] D. Boffi, F. Brezzi, M. Fortin, <i>Mixed Finite Element Methods and Applications</i>, Springer Series in Computational Mathematics, New York: Springer, 2013. · Zbl 1277.65092
[8] Z, Alterating positive semidefinite splitting preconditioners for double saddle point problems, Calcolo, 56, 26 (2019) · Zbl 1420.65036 · doi:10.1007/s10092-019-0322-7
[9] J, Schur complement systems in the mixed-hybrid finite element approximation of the potential fluid flow problem, SIAM J. Sci. Comput., 22, 704-723 (2005) · Zbl 0978.76052
[10] B, A comparison of reduced and unreduced KKT systems arising from interior point methods, Comput. Optim. Appl., 68, 1-27 (2017) · Zbl 1406.90088 · doi:10.1007/s10589-017-9907-8
[11] N, Spectral analysis of the preconditioned system for the \(3\times3\) block saddle point problem, Numer. Algorithms, 81, 421-444 (2019) · Zbl 1454.65019 · doi:10.1007/s11075-018-0555-6
[12] N, Variable parameter Uzawa method for solving a class of block three-by-three saddle point problems, Numer. Algorithms, 85, 1233-1254 (2020) · Zbl 1455.65049 · doi:10.1007/s11075-019-00863-y
[13] A, A preconditioned nullspace method for liquid crystal director modeling, SIAM J. Sci. Comput., 35, B226-B247 (2013) · Zbl 1276.82061 · doi:10.1137/120870219
[14] Y. Saad, <i>Iterative Methods for Sparse Linear Systems</i>, Boston: PS Publishing Company, 2003. · Zbl 1031.65046
[15] S. J. Wright, <i>Primal-Dual Interior-Point Methods</i>, Society for Industrial and Applied Mathematics, Philadelphia, 1997. · Zbl 0863.65031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.