×

Matrix group integrals, surfaces, and mapping class groups. I. \(\mathrm{U}(\mathrm{n})\). (English) Zbl 1484.60005

If uniformly random substitutions from a permutation group \(S_n\) in a word \(w\) always result in the uniform distribution, then \(w\) must be a primitive word. It is not known if the same holds when the permutation groups are replaced by the unitary matrix groups \(U(n)\). This problem, mentioned in the concluding section, motivates the study of distribution of words in compact groups, which is the underlying topic of the current paper.
For words \(w_1,\dots,w_\ell\) in the free group, consider the expected value \(T_{w_1,\dots,w_\ell}(n)\) of the product \(\operatorname{tr}(w_1)\cdots \operatorname{tr}(w_\ell)\), where the \(w_i\) are evaluated at matrices chosen uniformly at random from the unitary group \(U(n)\). It is shown that the value of \(T_{w_1,\dots,w_\ell}\) is a rational function of (large enough) \(n\), with rational coefficients.
The main theme of this paper is that the coefficients of the Laruent series of \(T_{w_1,\dots,w_\ell}(n)\) are determined by combinatorial data related to the \(w_j\). Namely, one considers pairs \((\Sigma,f)\) where \(\Sigma\) is an oriented, compact surface with \(\ell\) boundary components and no closed connected components; and \(f\) is a map from \(\Sigma\) to a bouquet of \(\ell\) loops, such that the restriction of \(f\) to the boundary represents the words \(w_j\). Applying a mixture of combinatorial geometry techniques, the authors prove that the coefficient of \(n^{-c}\) in the Laurent series of \(T_{w_1,\dots,w_n}\) is the sum of \(L^2\)-Euler characteristics of the stabilizers of \(f\) in the mapping class group of \(\Sigma\), ranging over equivalence classes of pairs \((\Sigma,f)\) with \(\chi(\Sigma) = -c\).
An interesting application is that the leading coefficient of \(T_w(n)\) counts the presentations of \(w\) as a product of minimal length of commutators, up to equivalence, “correcting” for nontrivial stabilizers. Similarly, the stable commutator length can be read off from the orders of magnitude of the mixed values \(T_{w^{j_1},\dots,w^{j_p}}(n)\).
The main object in the proof is a polysimplicial complex of transverse maps homotopic to \(f\), associated to a pair \((\Sigma,f)\). This complex is shown to be contractible. One is then able to obtain a combinatorial formula for the above-mentioned \(L^2\)-Euler characteristic.

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)

References:

[1] Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 308(1505), 523-615 (1983) · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[2] Amit, A., Vishne, U.: Characters and solutions to equations in finite groups. J. Algebra Appl. 10(4), 675-686 (2011) · Zbl 1246.20030 · doi:10.1142/S0219498811004690
[3] Brown, K.S.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, New York (1982) · Zbl 0584.20036 · doi:10.1007/978-1-4684-9327-6
[4] Calegari, D.: What is \[\ldots \]… stable commutator length? Not. Am. Math. Soc. 55(9), 1100-1101 (2008) · Zbl 1152.57303
[5] Calegari, D.: scl, MSJ Memoirs, vol. 20. Mathematical Society of Japan, Tokyo (2009) · Zbl 1187.20035
[6] Calegari, D.: Stable commutator length is rational in free groups. J. Am. Math. Soc. 22(4), 941-961 (2009) · Zbl 1225.57002 · doi:10.1090/S0894-0347-09-00634-1
[7] Cheeger, J., Gromov, M.: \[L_2\] L2-cohomology and group cohomology. Topology 25(2), 189-215 (1986) · Zbl 0597.57020 · doi:10.1016/0040-9383(86)90039-X
[8] Collins, B.: Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Not. 2003(17), 953-982 (2003) · Zbl 1049.60091 · doi:10.1155/S107379280320917X
[9] Collins, B., Śniady, P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264(3), 773-795 (2006) · Zbl 1108.60004 · doi:10.1007/s00220-006-1554-3
[10] Culler, M.: Using surfaces to solve equations in free groups. Topology 20(2), 133-145 (1981) · Zbl 0452.20038 · doi:10.1016/0040-9383(81)90033-1
[11] Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36, 75-109 (1969) · Zbl 0181.48803 · doi:10.1007/BF02684599
[12] Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31, 49-62 (1994) · Zbl 0807.15015 · doi:10.1017/S0021900200106989
[13] Edmunds, C.C.: On the endomorphism problem for free groups. Commun. Algebra 3(1), 1-20 (1975) · Zbl 0299.20018 · doi:10.1080/00927877508822028
[14] Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton (2012) · Zbl 1245.57002
[15] Fulton, W.: Young tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997) · Zbl 0878.14034
[16] Goldman, W.M.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54(2), 200-225 (1984) · Zbl 0574.32032 · doi:10.1016/0001-8708(84)90040-9
[17] Goldman, W.M.: Ergodic theory on moduli spaces. Ann. Math. (2) 146(3), 475-507 (1997) · Zbl 0907.57009 · doi:10.2307/2952454
[18] Goldstein, R.Z., Turner, E.C.: Applications of topological graph theory to group theory. Math. Z. 165(1), 1-10 (1979) · Zbl 0377.20027 · doi:10.1007/BF01175125
[19] Harvey, W. J.; Kra, Irwin (ed.); Maskit, Bernard (ed.), Boundary Structure of The Modular Group, 245-252 (1981), Princeton · Zbl 0461.30036 · doi:10.1515/9781400881550-019
[20] Harer, J.L.: Stability of the homology of the mapping class groups of orientable surfaces. Ann. Math. (2) 121(2), 215-249 (1985) · Zbl 0579.57005 · doi:10.2307/1971172
[21] Harer, J.L.: The virtual cohomological dimension of the mapping class group of an orientable surface. Invent. Math. 84(1), 157-176 (1986) · Zbl 0592.57009 · doi:10.1007/BF01388737
[22] Hui, C.Y., Larsen, M., Shalev, A.: The Waring problem for Lie groups and Chevalley groups. Isr. J. Math. 210(1), 81-100 (2015) · Zbl 1343.22006 · doi:10.1007/s11856-015-1246-9
[23] Harer, J.L., Zagier, D.: The Euler characteristic of the moduli space of curves. Invent. Math. 85(3), 457-485 (1986) · Zbl 0616.14017 · doi:10.1007/BF01390325
[24] Ivanov, N.V.: Mapping Class Groups. Handbook of Geometric Topology, pp. 523-633. Elsevier, Amsterdam (2002) · Zbl 1002.57001
[25] Labourie, F.: Lectures on Representations of Surface Groups. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2013) · Zbl 1285.53001 · doi:10.4171/127
[26] Lück, \[W.: L^2\] L2-invariants: theory and applications to geometry and \[KK\]-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer, Berlin (2002) · Zbl 1009.55001
[27] Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications, Encyclopaedia of Mathematical Sciences, vol. 141. Springer, Berlin (2004). (With an appendix by Don B. Zagier, Low-Dimensional Topology, II) · Zbl 1040.05001 · doi:10.1007/978-3-540-38361-1
[28] McMullen, C.T.: The moduli space of Riemann surfaces is Kähler hyperbolic. Ann. Math. Second Ser. 151(1), 327-357 (2000). (eng) · Zbl 0988.32012 · doi:10.2307/121120
[29] Mondello, G.: A remark on the homotopical dimension of some moduli spaces of stable Riemann surfaces. J. Eur. Math. Soc. (JEMS) 10(1), 231-241 (2008) · Zbl 1191.14031 · doi:10.4171/JEMS/109
[30] Magee, M., Puder, D.: Word measures on unitary groups, arXiv preprint 1509.07374v2 [math.GR] (2016) · Zbl 1480.20104
[31] Magee, M., Puder, D.: Surface words are determined by word measures on groups (2019). arXiv:1902.04873 · Zbl 1480.20104
[32] Mingo, J.A., Śniady, P., Speicher, R.: Second order freeness and fluctuations of random matrices. II. Unitary random matrices. Adv. Math. 209(1), 212-240 (2007) · Zbl 1122.46045 · doi:10.1016/j.aim.2006.05.003
[33] Novaes, M.: Expansion of polynomial lie group integrals in terms of certain maps on surfaces, and factorizations of permutations. J. Phys. A: Math. Theor. 50(7), 075201 (2017) · Zbl 1360.81176 · doi:10.1088/1751-8121/aa55f2
[34] Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series, vol. 335. Cambridge University Press, Cambridge (2006) · Zbl 1133.60003 · doi:10.1017/CBO9780511735127
[35] Penner, R.C.: Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom. 27(1), 35-53 (1988) · Zbl 0608.30046 · doi:10.4310/jdg/1214441648
[36] Puder, D., Parzanchevski, O.: Measure preserving words are primitive. J. Am. Math. Soc. 28(1), 63-97 (2015) · Zbl 1402.20042 · doi:10.1090/S0894-0347-2014-00796-7
[37] Puder, D.: Primitive words, free factors and measure preservation. Isr. J. Math. 201(1), 25-73 (2014) · Zbl 1308.20023 · doi:10.1007/s11856-013-0055-2
[38] Quillen, D.: Higher Algebraic \[KK\]-Theory. I. Lecture Notes in Mathematics, vol. 341, pp. 85-147. Springer, Berlin (1973) · Zbl 0292.18004
[39] Rădulescu, F.: Combinatorial aspects of Connes’s embedding conjecture and asymptotic distribution of traces of products of unitaries. In: Proceedings of the Operator Algebra Conference, Bucharest, Theta Foundation (2006) · Zbl 1199.60032
[40] Serre, Jean-Pierre, COHOMOLOGIE DES GROUPES DISCRETS, 77-170 (1972), Princeton · Zbl 0229.57016 · doi:10.1515/9781400881697-005
[41] Shalev, A.: Some results and problems in the theory of word maps, Erdős Centennial (Bolyai Society Mathematical Studies). In: Lovász, L., Ruzsa, I., Sós, V.T., Palvolgyi, D. (eds.) Springer, pp. 611-650 (2013)
[42] tom Dieck, T.: Orbittypen und äquivariante Homologie. I. Arch. Math. (Basel) 23, 307-317 (1972) · Zbl 0252.55003 · doi:10.1007/BF01304886
[43] tom Dieck, T.: Transformation Groups. De Gruyter Studies in Mathematics, vol. 8. Walter de Gruyter & Co., Berlin (1987) · Zbl 0611.57002 · doi:10.1515/9783110858372
[44] ’t Hooft, G.: A planar diagram theory for strong interactions. Nuclear Phys. B 72(3), 461-473 (1974) · doi:10.1016/0550-3213(74)90154-0
[45] Voiculescu, D.V., Dykema, K.J., Nica, A.: Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups (1992) · Zbl 0795.46049
[46] Voiculescu, D.: Limit laws for random matrices and free products. Invent. Math. 104(1), 201-220 (1991) · Zbl 0736.60007 · doi:10.1007/BF01245072
[47] von Neumann, J.: Zur allgemeinen Theorie des Maßes. Fundam. Math. 13, 73-116 (1929). (German) · JFM 55.0151.01 · doi:10.4064/fm-13-1-73-116
[48] Walker, J.W.: Canonical homeomorphisms of posets. Eur. J. Combin. 9(2), 97-107 (1988) · Zbl 0661.06006 · doi:10.1016/S0195-6698(88)80033-7
[49] Weingarten, D.: Asymptotic behavior of group integrals in the limit of infinite rank. J. Math. Phys. 19(5), 999-1001 (1978) · Zbl 0388.28013 · doi:10.1063/1.523807
[50] Witten, E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141(1), 153-209 (1991) · Zbl 0762.53063 · doi:10.1007/BF02100009
[51] Xu, F.: A random matrix model from two dimensional Yang-Mills theory. Commun. Math. Phys. 190(2), 287-307 (1997) · Zbl 0937.81043 · doi:10.1007/s002200050242
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.