×

Error estimates of variational discretization for semilinear parabolic optimal control problems. (English) Zbl 1484.49060

Summary: In this paper, variational discretization directed against the optimal control problem governed by nonlinear parabolic equations with control constraints is studied. It is known that the a priori error estimates is \(|||u-u_h|||_{L^\infty(J; L^2(\Omega))} = O(h+k)\) using backward Euler method for standard finite element. In this paper, the better result \(|||u-u_h|||_{L^\infty(J; L^2(\Omega))} = O(h^2+k)\) is gained. Beyond that, we get a posteriori error estimates of residual type.

MSC:

49M41 PDE constrained optimization (numerical aspects)
49M25 Discrete approximations in optimal control
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

References:

[1] P. Neittaanmaki, D. Tiba, <i>Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms</i> <i>and Applications</i>, Dekker, New Nork, 1994. · Zbl 0812.49001
[2] D. Tiba, <i>Lectures on The Optimal Control of Elliptic Equations</i>, University of Jyvaskyla Press, Finland, 1995.
[3] W. Liu, N. Yan, <i>Adaptive Finite Element Methods For Optimal Control Governed by PDEs</i>, Science Press, Beijing, 2008.
[4] Y. Chen, Z. Lu, W. Liu, <i>Numerical solution of partial differential equation</i>, Science Press, Beijing, 2015.
[5] T, Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems, Comput. Math. Appl., 74, 714-726 (2017) · Zbl 1385.49021 · doi:10.1016/j.camwa.2017.05.021
[6] P. Ciarlet, <i>The Finite Element Method for Elliptic Problems</i>, North-Holland, Amstterdam, 1978. · Zbl 0383.65058
[7] Y, A legendre galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46, 2254-2275 (2008) · Zbl 1175.49003 · doi:10.1137/070679703
[8] Y, Superconvergence for optimal control problems gonverned by semi-linear elliptic equations, J. Sci. Comput., 39, 206-221 (2009) · Zbl 1203.65177 · doi:10.1007/s10915-008-9258-9
[9] X, <i>L</i><sup>∞;</sup>-error estimates for general optimal control problem by mixed finite element methods, Int. J. Numer. Anal. Model., 5, 441-456 (2008) · Zbl 1160.35551
[10] R, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41, 1321-1349 (2002) · Zbl 1034.49031 · doi:10.1137/S0363012901389342
[11] P, Optimal control of partial differential equations, SIAM J. Control Optim., 50, 943-963 (2012) · Zbl 1244.49038 · doi:10.1137/100815037
[12] W, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93, 497-521 (2003) · Zbl 1049.65057 · doi:10.1007/s002110100380
[13] B. I. Ananyev, <i>A control problem for parabolic systems with incomplete information</i>, Mathematical Optimization Theory and Operations Research, Springer, Cham, 2019. · Zbl 1439.49063
[14] H, Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations, J. Comput. Appl. Math., 209, 187-207 (2007) · Zbl 1140.65053 · doi:10.1016/j.cam.2006.10.083
[15] W, A posteriori error estimates for control problems governed by Stokes equations, SIAM J. Numer. Anal., 40, 1850-1869 (2002) · Zbl 1028.49025 · doi:10.1137/S0036142901384009
[16] J. Lions, <i>Optimal Control of Systems Governed by Partial Differential Equations</i>, Springer-Verlag, Berlin, 1971. · Zbl 0203.09001
[17] J. Lions, E. Magenes, <i>Non Homogeneous Boundary Value Problems and Applications</i>, Springer-verlag, Berlin, 1972. · Zbl 0223.35039
[18] H, A priori error estimates for optimal problems governed by transient advection-diffusion equations, J. Sci. Comput., 38, 290-315 (2009) · Zbl 1203.65163 · doi:10.1007/s10915-008-9224-6
[19] W, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math., 15, 285-309 (2001) · Zbl 1008.49024 · doi:10.1023/A:1014239012739
[20] R, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comput., 33, 155-182 (2007) · Zbl 1128.65048 · doi:10.1007/s10915-007-9147-7
[21] N, postriori error estimators of gradient recovery type for FEM of a model optimal control problem, Adv. Comp. Math., 19, 323-336 (2003) · Zbl 1027.65087 · doi:10.1023/A:1022800401298
[22] Y, Variational discretization for parabolic optimal control problems with control constraints, J. Systems Sci. Compl., 25, 880-895 (2012) · Zbl 1269.49054 · doi:10.1007/s11424-012-0279-y
[23] M, A variational discretization concept in cotrol constrained optimization: the linear-quadratic case, Comput. Optim. Appl., 30, 45-63 (2005) · Zbl 1074.65069 · doi:10.1007/s10589-005-4559-5
[24] M, Variational discretization for optimal control governed by convection dominated diffusion equations, J. Comput. Math., 27, 237-253 (2009) · Zbl 1212.65248
[25] M. Huang, <i>Numerical Methods for Evelution Equations</i>, Secience Press, Beijing, 2004.
[26] A. Kufner, O. John, S. Fuck, <i>Function Spaces</i>, Nordhoff, Leiden, The Netherlands, 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.