×

Solitons, breathers and rational solutions for a (2+1)-dimensional dispersive long wave system. (English) Zbl 1484.35132

Summary: In this paper, we investigate a (2+1)-dimensional dispersive long wave system with an arbitrary constant \(a\). Solitons, line breathers, rational solutions and algebraic solitons of the system are constructed based on Hirota’s bilinear method and Kadomtsev-Petviashvili (KP) hierarchy reduction technique. These solutions are expressed in terms of \(N \times N\) determinant. When the size of the determinant \(N\) is odd, solutions on periodic backgrounds are generated. Solutions on constant backgrounds are derived when \(N\) is even. By using asymptotic analysis, we elucidate explicit expressions of asymptotic algebraic solitons localized in the straight for the algebraic soliton solutions. As a byproduct, we find lump solutions for an intermediate potential of the system. The effects of constant \(a\) are discussed and it is shown that the constant can affect collision of solitons. Dynamics of the obtained solutions are discussed with plots.

MSC:

35C08 Soliton solutions
35G25 Initial value problems for nonlinear higher-order PDEs
Full Text: DOI

References:

[1] Zabusky, N. J.; Kruskal, M. D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 6, 240-243 (1965) · Zbl 1201.35174
[2] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scat Tering (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001
[3] Ablowitz, M. J.; Fokas, A. S., Complex Variables: Introduction and Applications (2003), Cambridge University Press · Zbl 1088.30001
[4] Gu, C. H.; Hu, H. S.; Zhou, Z. X., Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry (2006), Springer
[5] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge University Press · Zbl 1099.35111
[6] Jimbo, M.; Miwa, T., Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci., 19, 943-1001 (1983) · Zbl 0557.35091
[7] Dysthe, K.; Krogstad, H. E.; Müller, P., Oceanic rogue waves, Annu. Rev. Fluid Mech., 40, 287-310 (2008) · Zbl 1136.76009
[8] Xu, S.; He, J.; Wang, L., The darboux transformation of the derivative nonlinear Schr ödinger equation, J. Phys. A, 44, Article 305203 pp. (2011) · Zbl 1221.81063
[9] Wen, X.; Yan, Z., Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized darboux transformation, Chaos, 25, Article 123115 pp. (2015) · Zbl 1374.37092
[10] Guo, B.; Ling, L.; Liu, Q., High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations, Stud. Appl. Math., 130, 317-344 (2013) · Zbl 1303.35098
[11] Ohta, Y.; Yang, J., General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation, Proc. R. Soc. Lond. Ser. A, 2142, 1716-1740 (2012) · Zbl 1364.76033
[12] Ohta, Y.; Yang, J., Rogue waves in the Davey-Stewartson I equation, Phys. Rev. E, 2, Article 036604 pp. (2012)
[13] Ohta, Y.; Yang, J., Dynamics of rogue waves in the Davey-Stewartson II equation, J.Phys. A, 10, Article 105202 pp. (2013) · Zbl 1311.35298
[14] Ohta, Y.; Yang, J., General rogue waves in the focusing and defocusing Ablowitz-Ladik equations, J. Phys. A, 25, Article 255201 pp. (2014) · Zbl 1294.35121
[15] Feng, B. F.; Luo, X.; Ablowitz, M.; Musslimani, Z., General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions, Nonlinearity, 31, 5385-5409 (2018) · Zbl 1406.37049
[16] Li, M.; Fu, H.; Wu, C., General soliton and (semi-)rational solutions to the nonlocal Mel’nikov equation on the periodic background, Stud. Appl. Math., 145, 97-136 (2020) · Zbl 1454.37066
[17] Manakov, S. V.; Zakharov, V. E.; Bordag, A.; Its, A. R.; Matveev, V. B., Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A., 63, 205-206 (1977)
[18] Satsuma, J.; Ablowitz, M. J., Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 20, 1496-1503 (1979) · Zbl 0422.35014
[19] Matsuno, Y., A direct proof of the N-soliton solution of the Benjamin-Ono equation by means of Jacobi’s formula, J. Phys. Soc. Japan, 57, 1924-1929 (1988)
[20] Matsuno, Y., New type of algebraic solitons expressed in terms of pfaffians, J. Phys. Soc. Japan, 58, 1948-1961 (1989)
[21] Li, M.; Xu, T.; Meng, D. X., Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model, J. Phys. Soc. Japan, 85, Article 124001 pp. (2016)
[22] Xu, T.; Li, L. L.; Li, M.; Li, C. X.; Zhang, X. F., Rational solutions of the defocusing nonlocal nonlinear Schrodinger equation: Asymptotic analysis and soliton interactions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 477, Article 20210512 pp. (2021), arXiv:2002.00134
[23] Boiti, M.; Leon, J. J.P.; Pempinelli, F., Spectral transform for a two spatial dimension extension of the dispersive long wave equation, Inverse Probl., 3, 371-387 (1987) · Zbl 0641.35067
[24] Broer, LJF., Approximate equations for long water waves, Appl. Sci. Res., 31, 377-395 (1975) · Zbl 0326.76017
[25] Broer, LJF., On the hamiltonian theory of surface waves, Appl. Sci. Res., 29, 430-446 (1974) · Zbl 0314.76014
[26] Hu, J.; Xu, Z. W.; Yu, G. F., Determinant structure for the (2+1)-dimensional dispersive long wave system, Appl. Math. Lett., 62, 76-83 (2016) · Zbl 1352.35112
[27] Paquin, G.; Winternitz, P., Group theoretical analysis of dispersive long wave equations in two space dimensions, Phys. D., 46, 122-138 (1990) · Zbl 0725.35104
[28] Lou, S. Y., Painlevé test for the integrable dispersive long wave equations in two space dimensions, Phys. Lett. A, 176, 96-100 (1993)
[29] Fan, E., Darboux transformation and soliton-like solutions for dispersive long wave equations, (Computer Mathematics (Chiang Mai, 2000). Computer Mathematics (Chiang Mai, 2000), Lecture Notes Ser. Comput., vol. 8 (2000), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 249-257 · Zbl 0981.65119
[30] Li, R. M.; Geng, X. G., On a vector long wave-short wave-type model, Stud. Appl. Math., 144, 164-184 (2020) · Zbl 1454.35314
[31] Wang, M. L.; Zhou, Y. B.; Li, Z. B., A nonlinear transformation of the dispersive long wave equations in (2+1) dimensions and its applications, J. Nonlinear Math. Phys., 5, 120-125 (1998) · Zbl 0948.35086
[32] Zhang, J. F., Exotic localized coherent structures of the (2+1)-dimensional dispersive long-wave equation, Commun. Theor. Phys., 37, 277-282 (2002) · Zbl 1267.37094
[33] Zhang, J. F.; Han, P., New multisoliton solutions of the (2+1)-dimensional dispersive long wave equations, Commun. Nonlinear Sci. Numer. Simul., 6, 178-182 (2001) · Zbl 0996.35067
[34] Sun, K.; Tian, B.; Liu, W.; Li, M.; Qu, Q.; Jiang, Y., Symbolic-computation study on the (2+1)-dimensional dispersive long wave system, SIAM J. Appl. Math., 70, 2259-2272 (2010) · Zbl 1385.76007
[35] P.G. Grinevich, P.M. Santini, The finite gap method and the periodic nls cauchy problem of the anomalous waves, in: for a Finite Number of Unstable Modes, arXiv:1810.09247. · Zbl 1454.35340
[36] Peng, W. Q.; Tian, S. F.; Wang, X. B.; Zhang, T. T., Characteristics of rogue waves on a periodic background for the Hirota equation, Wave Motion, 93, Article 102454 pp. (2020) · Zbl 1524.35596
[37] Feng, B. F.; Ling, L. M.; Takahashi, D. A., Multi-breather and high-order rogue waves for the nonlinear schrodinger equation on the elliptic function background, Stud. Appl. Math., 144, 46-101 (2020) · Zbl 1454.35338
[38] Gegenhasi X. B. Hu, B. F.; Wang, H. Y., A (2 + 1)-dimensional sinh-Gordon equation and its Pfaffian generalization, Phys. Lett. A., 360, 439-447 (2007) · Zbl 1236.35147
[39] Sheng, H. H.; Yu, G. F., Rational solutions of a (2+1)-dimensional sinh-Gordon equation, Appl. Math. Lett., 101, Article 106051 pp. (2020) · Zbl 1428.35070
[40] Yu, G. F.; Tam, H. W., On the (2+1)-dimensional gardner equation: determinant solutions and Pfaffianization, J. Math. Anal. Appl., 330, 989-1001 (2007) · Zbl 1160.35066
[41] Ohta, Y., Dark soliton solution of Sasa-Satsuma equation, AIP Conf. Proc., 1212, 114-121 (2010) · Zbl 1214.81083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.