×

Critical traveling wave solutions for a vaccination model with general incidence. (English) Zbl 1484.35118

Summary: This paper is concerned with the existence of traveling wave solutions for a vaccination model with general incidence. The existence or non-existence of traveling wave solutions for the model with specific incidence were proved recently when the wave speed is greater or smaller than a critical speed respectively. However, the existence of critical traveling wave solutions (with critical wave speed) was still open. In this paper, applying the Schauder’s fixed point theorem via a pair of upper- and lower-solutions of the system, we show that the general vaccination model admits positive critical traveling wave solutions which connect the disease-free and endemic equilibria. Our result not only gives an affirmative answer to the open problem given in the previous specific work, but also to the model with general incidence. Furthermore, we extend our result to some nonlocal version of the considered model.

MSC:

35C07 Traveling wave solutions
35K57 Reaction-diffusion equations
92B05 General biology and biomathematics
Full Text: DOI

References:

[1] Y.-S. Chen and J.-S. Guo, Traveling wave solutions for a three-species predator-prey model with two aborigine preys, Japan J. Indust. Appl. Math., (2020).
[2] A. Ducrot, J.-S. Guo, G. Lin and S. X. Pan, The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal, Z. Angew. Math. Phys., 70 (2019), 25 pp. · Zbl 1422.35115
[3] S.-C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435, 20-37 (2016) · Zbl 1347.34101 · doi:10.1016/j.jmaa.2015.09.069
[4] J.-S. Guo, K. I. Nakamura, T. Ogiwara and C.-C. Wu, Traveling wave solutions for a predator-prey system with two predators and one prey, Nonlinear Anal. RWA, 54 (2020), 103111, 13pp. · Zbl 1437.34052
[5] L. I. Ignat; J. D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal., 251, 399-437 (2007) · Zbl 1149.35009 · doi:10.1016/j.jfa.2007.07.013
[6] Y. Li; W.-T. Li; G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14, 1001-1022 (2015) · Zbl 1422.35106 · doi:10.3934/cpaa.2015.14.1001
[7] J. D. Wei, J. B. Zhou, Z. L. Zhen and L. X. Tian, Super-critical and critical traveling waves in a two-component lattice dynamical model with discrete delay, Appl. Math. Comput., 363 (2019), 124621. · Zbl 1433.34101
[8] J. D. Wei, J. B. Zhou, Z. L. Zhen and L. Tian, Super-critical and critical traveling waves in a three-component delayed disease system with mixed diffusion, J. Comput. Appl. Math., 367 (2020), 112451, 15pp. · Zbl 1428.35631
[9] J. D. Wei; J. B. Zhou; W. X. Chen; Z. L. Zhen; L. X. Tian, Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay, Commun. Pure. Appl. Anal., 19, 2853-2886 (2020) · Zbl 1439.35251 · doi:10.3934/cpaa.2020125
[10] C. F. Wu; Y. Yang; Q. Y. Zhao; Y. L. Tian; Z. T. Xu, Epidemic waves of a spatial SIR model in combination with random dispersal and non-local dispersal, Appl. Math. Comput., 313, 122-143 (2017) · Zbl 1426.35218 · doi:10.1016/j.amc.2017.05.068
[11] Z. T. Xu; Y. Q. Xu; Y. H. Huang, Stability and traveling waves of a vaccination model with nonlinear incidence, Comput. Math. Appl., 75, 561-581 (2018) · Zbl 1409.92154 · doi:10.1016/j.camwa.2017.09.042
[12] L. Zhao; Z.-C. Wang, Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81, 795-823 (2016) · Zbl 1406.35444 · doi:10.1093/imamat/hxw033
[13] J. B. Zhou; L. Y. Song; J. D. Wei; H. M. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476, 522-538 (2019) · Zbl 1416.35071 · doi:10.1016/j.jmaa.2019.03.066
[14] J. B. Zhou; L. Y. Song; J. D. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equ., 268, 4491-4524 (2020) · Zbl 1440.34089 · doi:10.1016/j.jde.2019.10.034
[15] J. L. Zhou; Y. Yang; C.-H. Hsu, Traveling waves for a nonlocal dispersal vaccination model with general incidence, Discrete Contin. Dyn. Syst. Ser. B, 25, 1469-1495 (2020) · Zbl 1432.37120 · doi:10.3934/dcdsb.2019236
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.