×

On \(\mathscr{M}\)-convex functions. (English) Zbl 1484.26046

Summary: In this article, we introduce the notion of \(\mathscr{M}\)-convex functions, \(\log -\mathscr{M}\)-convex functions and the notion of quasi \(\mathscr{M}\)-convex functions. We derive some new analogues of Hermite-Hadamard like inequalities associated with \(\mathscr{M}\)-convex functions by using the concepts of ordinary, fractional and quantum calculus. The main results of this paper may be useful where bounds for natural phenomena described by integrals such as mechanical work are frequently required. These results are also helpful in the field of numerical analysis where error analysis is required.

MSC:

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals
26A51 Convexity of real functions in one variable, generalizations

References:

[1] M. Alp; M. Z. Sarikaya; M. Kunt, t al. <i>q-Hermite Hadamard inequalities and quantum estimates</i> <i>for midpoint type inequalities via convex and quasi-convex functions</i, J. King Saud Univ., Sci., 30, 193-203 (2018) · doi:10.1016/j.jksus.2016.09.007
[2] M. U. Awan; G. Cristescu; M. A. Noor, t al. <i>Upper and lower bounds for Riemann type quantum</i> <i>integrals of preinvex and preinvex dominated functions</i, UPB Sci. Bull., Ser. A., 79, 33-44 (2017) · Zbl 1513.26034
[3] F. Al-Azemi; O. Calin, i>Asian options with harmonic average</i, Appl. Math. Inf. Sci., 9, 1-9 (2015)
[4] G. Cristescu; M. A. Noor; M. U. Awan, i>Bounds of the second degree cumulative frontier gaps of</i> <i>functions with generalized convexity</i, Carpath. J. Math., 31, 173-180 (2015) · Zbl 1349.26011
[5] G. Cristescu, L. Lupsa, <i>Non-connected Convexities and Applications</i>, Kluwer Academic Publishers, Dordrecht, Holland, 2002. · Zbl 1037.52008
[6] S. S. Dragomir; R. P. Agarwal, i>Two inequalities for differentiable mappings and applications to</i> <i>special means of real numbers and to trapezoidal formula</i, Appl. Math. lett., 11, 91-95 (1998) · Zbl 0938.26012
[7] S. S. Dragomir; B. Mond, i>Integral inequalities of Hadamard’s type for</i> log<i>-convex functions</i, Demonstration Math., 2, 354-364 (1998) · Zbl 0912.26009
[8] S. S. Dragomir, C. E. M. Pearce, <i>Selected topics on Hermite-Hadamard inequalities and</i> <i>applications</i>, Victoria University, Australia, 2000.
[9] T. S. Du; J. G. Liao; Y. J. Li, i>Properties and integral inequalities of Hadamard-Simpson type for</i> <i>the generalized</i> (<i>s</i, m)-preinvex functions, J. Nonlinear Sci. Appl., 9, 3112-3126 (2016) · Zbl 1345.26034 · doi:10.22436/jnsa.009.05.102
[10] T. S. Du; Y. J. Li; Z. Q. Yang, i>A generalization of Simpson’s inequality via differentiable mapping</i> <i>using extended</i> (<i>s</i, m)-convex functions, Appl. Math. Comput., 293, 358-369 (2017) · Zbl 1411.26020
[11] A. Guessab; G. Schmeisser, i>Sharp integral inequalities of the Hermite-Hadamard type</i, J. Approx. Theory, 115, 260-288 (2002) · Zbl 1012.26013 · doi:10.1006/jath.2001.3658
[12] A. Guessab; G. Schmeisser, i>Convexity results and sharp error estimates in approximate</i> <i>multivariate integration</i, Math. Comp., 73, 1365-1384 (2004) · Zbl 1119.65016
[13] I. Iscan, i>Hermite-Hadamard type inequalities for harmonically convex functions</i, Hacettepe J. Math. Stat., 43, 935-942 (2014) · Zbl 1321.26048
[14] M. Khaled; P. Agarwal, i>New Hermite-Hadamard type integral inequalities for convex functions</i> <i>and their applications</i, J. Comput. Appl. Math., 350, 274-285 (2019) · Zbl 1405.26024 · doi:10.1016/j.cam.2018.10.022
[15] A. Kilbas, H. M. Srivastava, J. J. Trujillo, <i>Theory and applications of fractional dierential</i> <i>equations</i>, Elsevier B.V., Amsterdam, Netherlands, 2006. · Zbl 1092.45003
[16] K. Liu; J. R. Wang; D. O’Regan, i>On the Hermite-Hadamard type inequality for ψ-RiemannLiouville fractional integrals via convex functions</i, J. Inequal. Appl., 2019 (2019) · Zbl 1499.26144
[17] M. V. Mihai; M. A. Noor; K. I. Noor, t al. <i>Some integral inequalities for harmonic h-convex</i> <i>functions involving hypergeometric functions</i, Appl. Math. Comput., 252, 257-262 (2015) · Zbl 1338.26016
[18] C. P. Niculescu, L. E. Persson, <i>Convex Functions and Their Applications. A Contemporary</i> <i>Approach</i>, 2 Eds. CMS Books in Mathematics, vol. 23. Springer, New York, 2018. · Zbl 1404.26003
[19] M. A. Noor; K. I. Noor; M. U. Awan, i>Some quantum estimates for Hermite-Hadamard inequalities</i, Appl. Math. Comput., 251, 675-679 (2015) · Zbl 1328.81110
[20] M. A. Noor; K. I. Noor; M. U. Awan, t al. <i>Fractional Hermite-Hadamard inequalities for some</i> <i>new classes of Godunova-Levin functions</i, Appl. Math. Inf. Sci., 8, 2865-2872 (2014) · doi:10.12785/amis/080623
[21] C. E. M. Pearce; J. Pecaric, i>Inequalities for differentiable mappings with application to special</i> <i>means and quadrature formulae</i, Appl. Math. Lett., 13, 51-55 (2000) · Zbl 0970.26016
[22] J. E. Pecaric, F. Prosch, Y. L. Tong, <i>Convex Functions, Partial Orderings, and Statistical</i> <i>Applications</i>, Academic Press, NewYork, 1992. · Zbl 0749.26004
[23] L. Riahi; M. U. Awan; M. A. Noor, i>Some complementary q-bounds via different classes of convex</i> <i>functions</i, UPB Sci. Bull., Ser. A, 79, 171-182 (2017) · Zbl 1513.26072
[24] M. Z. Sarikaya; E. Set; H. Yaldiz, t al. <i>Hermite-Hadamards inequalities for fractional in- tegrals</i> <i>and related fractional inequalities</i, Math. Comput. Model., 57, 2403-2407 (2013) · Zbl 1286.26018 · doi:10.1016/j.mcm.2011.12.048
[25] J. Tariboon; S. K. Ntouyas, i>Quantum integral inequalities on finite intervals</i, J. Inequal. Appl., 2014 (2014) · Zbl 1308.26045
[26] Y. Zhang; T. S. Du; H. Wang, t al. <i>Different types of quantum integral inequalities via</i> (<i>α;, m</i>)<i>-</i> <i>convexity</i, J. Inequal. Appl., 2018 (2018) · Zbl 1498.26077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.