×

Tensor product categorifications, Verma modules and the blob 2-category. (English) Zbl 1484.18022

Summary: We construct a dg-enhancement of KLRW algebras that categorifies the tensor product of a universal \(\mathfrak{sl}_2\) Verma module and several integrable irreducible modules. When the integrable modules are two-dimensional, we construct a categorical action of the blob algebra on derived categories of these dg-algebras which intertwines the categorical action of \(\mathfrak{sl}_2\). From the above we derive a categorification of the blob algebra.

MSC:

18N25 Categorification
20G42 Quantum groups (quantized function algebras) and their representations

References:

[1] R. Anno and V. Nandakumar, Exotic t-structures for two-block Springer fibers. Preprint, 2016. arXiv:1602.00768
[2] A. Aparicio-Monforte and M. Kauers, Formal Laurent series in several variables. Expo. Math. 31 (2013), no. 4, 350-367. MR 3133710 Zbl 1283.13018 · Zbl 1283.13018
[3] M. M. Asaeda, J. H. Przytycki, and A. S. Sikora, Categorification of the Kauffman bracket skein module of I -bundles over surfaces. Algebr. Geom. Topol. 4 (2004), 1177-1210. MR 2113902 Zbl 1070.57008 · Zbl 1070.57008
[4] D. Auroux, J. E. Grigsby, and S. M. Wehrli, Sutured Khovanov homology, Hochschild homology, and the Ozsváth-Szabó spectral sequence. Trans. Amer. Math. Soc. 367 (2015), no. 10, 7103-7131. MR 3378825 Zbl 1365.57011 · Zbl 1365.57011
[5] T. Barthel, J. May, and E. Riehl, Six model structures for DG-modules over DGAs: model category theory in homological action. New York J. Math. 20 (2014), 1077-1159. MR 3291613 Zbl 1342.16006 · Zbl 1342.16006
[6] J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and sl 2 -cat-egorification. Ann. of Math. (2) 167 (2008), no. 1, 245-298. MR 2373155 Zbl 1144.20001 · Zbl 1144.20001
[7] R. Dipper, D. James, and A. Mathas, Cyclotomic q-Schur algebras. Math. Z. 229 (1998), no. 3, 385-416. MR 1658581 Zbl 0934.20014 · Zbl 0934.20014
[8] M. Ehrig and D. Tubbenhauer, Relative cellular algebras. Transform. Groups 26 (2021), no. 1, 229-277. MR 4229665 Zbl 07371500 · Zbl 1482.16076
[9] G. Faonte, A 1 -functors and homotopy theory of dg-categories. J. Noncommut. Geom. 11 (2017), no. 3, 957-1000. MR 3713010 Zbl 1390.18034 · Zbl 1390.18034
[10] J. Graham, Modular representations of Hecke algebras and related algebras. Ph.D. thesis. University of Sydney, Sydney, 1985.
[11] R. M. Green, Generalized Temperley-Lieb algebras and decorated tangles. J. Knot Theory Ramifications 7 (1998), no. 2, 155-171. MR 1618912 Zbl 0926.20005 · Zbl 0926.20005
[12] A. Lacabanne, G. Naisse, and P. Vaz
[13] J. E. Grigsby, A. M. Licata, and S. M. Wehrli, Annular Khovanov homology and knotted Schur-Weyl representations. Compos. Math. 154 (2018), no. 3, 459-502. MR 3731256 Zbl 1422.57036 · Zbl 1422.57036
[14] J. Hu and A. Mathas, Quiver Schur algebras for linear quivers. Proc. Lond. Math. Soc. (3) 110 (2015), no. 6, 1315-1386. MR 3356809 Zbl 1364.20038 · Zbl 1364.20038
[15] K. Iohara, G. Lehrer, and R. Zhang, Schur-Weyl duality for certain infinite dimen-sional U q .sl 2 /-modules. Preprint, 2019. arXiv:1811.01325v2
[16] B. Keller, Deriving DG categories. Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63-102. MR 12584060799.18007 Zbl · Zbl 0799.18007
[17] B. Keller, On differential graded categories. In M. Sanz-Solé, J. Soria, J. L. Varona, and J. Verdera (eds.), International Congress of Mathematicians. Vol. II. Invited lectures. Proceedings of the congress held in Madrid, August 22-30, 2006. European Mathematical Society (EMS), Zürich, 2006, 151-190. MR 2275593 Zbl 1140.18008 · Zbl 1140.18008
[18] B. Keller and P. Nicolàs, Weight structures and simple dg modules for positive dg algebras. Int. Math. Res. Not. IMRN 2013, no. 5, 1028-1078. MR 3031826 Zbl 1312.18007 · Zbl 1312.18007
[19] M. Khovanov, A categorification of the Jones polynomial. Duke Math. J. 101 (2000), no. 3, 359-426. MR 1740682 Zbl 0960.57005 · Zbl 0960.57005
[20] M. Khovanov, Triply-graded link homology and Hochschild homology of Soergel bi-modules. Internat. J. Math. 18 (2007), no. 8, 869-885. MR 2339573 Zbl 1124.57003 · Zbl 1124.57003
[21] M. Khovanov, A. Lauda, J. Sussan, and Y. Yonezawa, Braid group actions from categorical symmetric Howe duality on deformed Webster algebras. Preprint, 2020. arXiv:1802.05358v2
[22] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quan-tum groups. I. Represent. Theory 13 (2009), 309-347. MR 2525917 Zbl 1188.81117 · Zbl 1188.81117
[23] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quan-tum groups. II. Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685-2700. MR 2763732 Zbl 1214.81113 · Zbl 1214.81113
[24] M. Khovanov, Y. Qi, and J. Sussan, p-DG cyclotomic nilHecke algebras. Preprint, 2017. arXiv:1711.07159v1
[25] M. Khovanov and P. Seidel, Quivers, Floer cohomology, and braid group actions. J. Amer. Math. Soc. 15 (2002), no. 1, 203-271. MR 1862802 Zbl 1035.53122 · Zbl 1035.53122
[26] M. Khovanov and J. Sussan, The Soergel category and the redotted Webster algebra. J. Pure Appl. Algebra 222 (2018), no. 8, 1957-2000. MR 3771843 Zbl 1418.16026 · Zbl 1418.16026
[27] A. Lacabanne and P. Vaz, Schur-Weyl duality, Verma modules, and row quotients of Ariki-Koike algebras. Pacific J. Math. 311 (2021), no. 1, 113-133. MR 4241799 · Zbl 1504.20010
[28] A. Lauda, A categorification of quantum sl.2/. Adv. Math. 225 (2010), no. 6, 3327-3424. MR 2729010 Zbl 1219.17012 · Zbl 1219.17012
[29] Tensor product categorifications and the blob 2-category 811
[30] J. Lurie, Higher algebra. Preprint, 2017. https://www.math.harvard.edu/ lurie/papers/HA.pdf
[31] M. Mackaay and B. Webster, Categorified skew howe duality and comparison of knot homologies. Adv. Math. 330 (2018), 876-945. MR 3787560 Zbl 1441.57014 · Zbl 1441.57014
[32] P. Martin and H. Saleur, The blob algebra and the periodic Temperley-Lieb algebra. Lett. Math. Phys. 30 (1994), no. 3, 189-206. MR 1267001 Zbl 0799.16005 · Zbl 0799.16005
[33] P. Martin and D. Woodcock, Generalized blob algebras and alcove geometry. LMS J. Comput. Math. 6 (2003), 249-296. MR 2051586 Zbl 1080.20004 · Zbl 1080.20004
[34] J. C. Moore, Algèbre homologique et homologie des espaces classifiants. In Sémi-naire Henri Cartan, 12ième année 1959/60. Périodicité des groupes d’homotopie stables des groupes classiques, d’après Bott. Deuxième édition, corrigée. École Nor-male Supérieure. Secrétariat mathématique, Paris, 1961, 1-37. Zbl 0115.17205 · Zbl 0115.17201
[35] G. Naisse, Asymptotic Grothendieck groups and cone bounded locally finite dg-algebras. Preprint, 2019. arXiv:1906.07215v1
[36] G. Naisse and P. Vaz, 2-Verma modules. Preprint, 2019. arXiv:1710.06293v2
[37] G. Naisse and P. Vaz, 2-Verma modules and the Khovanov-Rozansky link homolo-gies. Preprint, 2020. arXiv:1704.08485v3 · Zbl 1473.57039
[38] G. Naisse and P. Vaz, An approach to categorification of Verma modules. Proc. Lond. Math. Soc. (3) 117 (2018), no. 6, 1181-1241. MR 3893177 Zbl 1454.81114 · Zbl 1454.81114
[39] G. Naisse and P. Vaz, On 2-Verma modules for quantum sl 2 . Selecta Math. N.S. 24 (2018), no. 4, 3763-3821. MR 3848033 Zbl 1452.17020 · Zbl 1452.17020
[40] H. Queffelec and D. E. V. Rose, Sutured annular Khovanov-Rozansky homology. Trans. Amer. Math. Soc. 370 (2018), no. 2, 1285-1319. MR 3729501 Zbl 1435.57010 · Zbl 1435.57010
[41] D. Rose and D. Tubbenhauer, HOMFLYPT homology for links in handlebodies via type A Soergel bimodules. Quantum Topol. 12 (2021), no. 2, 373-410. MR 4261661 Zbl 07377320 · Zbl 1496.57013
[42] R. Rouquier, 2-Kac-Moody algebras. Preprint, 2008. arXiv:0812.5023v1
[43] C. Stroppel, Categorification of the Temperley-Lieb category, tangles, and cobor-disms via projective functors. Duke Math. J. 126 (2005), no. 3, 547-596. MR 2120117 Zbl 1112.17010 · Zbl 1112.17010
[44] C. Stroppel, Parabolic category O, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology. Compos. Math. 145 (2009), no. 4, 954-992. MR 2521250 Zbl 1187.17004 · Zbl 1187.17004
[45] C. Stroppel, Schur-Weyl dualities and link homologies. In R. Bhatia, A. Pal, G. Ran-garajan, V. Srinivas, and M. Vanninathan (eds.), Proceedings of the International Congress of Mathematicians. Volume III. Invited lectures. Held in Hyderabad, Au-gust 19-27, 2010. Hindustan Book Agency, New Delhi, 2010, 1344-1365. MR 2827844 Zbl 1244.17006 · Zbl 1244.17006
[46] C. Stroppel and B. Webster, Quiver Schur algebras and Fock space. Preprint, 2014. arXiv:1110.1115v2
[47] J. Sussan and Y. Qi, A categorification of the Burau representation at prime roots of unity. Selecta Math. N.S. 22 (2016), no. 3, 1157-1193. MR 3518548 Zbl 1345.81061 · Zbl 1345.81061
[48] B. Toën, The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167 (2007), no. 3, 615-667. MR 2276263 Zbl 1118.18010 · Zbl 1118.18010
[49] B. Toën, Lectures on dg-categories. In G. Cortiñas (ed.), Topics in algebraic and topological K-theory. Lecture Notes in Mathematics, 2008. Springer-Verlag, Berlin, 2011, 243-302. MR 2762557 Zbl 1216.18013 · Zbl 1216.18013
[50] B. Webster, Tensor product algebras, grassmannians and khovanov homology. In S. Gukov, M. Khovanov, and J. Walcher (eds.), Physics and mathematics of link ho-mology. Papers from the summer school held as part of the Séminaire de Mathéma-tiques Supérieures at the Centre de Recherches Mathématiques, Université de Mon-treal, Montreal, QC, June 24-July 5, 2013. Contemporary Mathematics, 680. Centre de Recherches Mathématiques Proceedings. American Mathematical Society, Provi-dence, R.I., 2016, 23-58. MR 3591642 Zbl 1408.57017
[51] B. Webster, Knot invariants and higher representation theory. Mem. Amer. Math. Soc. 250 (2017), no. 1191, v+141 pp. MR 3709726 Zbl 1446.57001 · Zbl 1446.57001
[52] Abel Lacabanne, Université Clermont Auvergne, CNRS, LMBP, 63000 Clermont-Ferrand, France e-mail: abel.lacabanne@uca.fr
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.