×

A structure theorem for almost low-degree functions on the slice. (English) Zbl 1484.06049

Summary: The Fourier-Walsh expansion of a Boolean function \(f: \{0, 1\}^n \rightarrow \{0, 1\}\) is its unique representation as a multilinear polynomial. The Kindler-Safra theorem (2002) asserts that if in the expansion of \(f\), the total weight on coefficients beyond degree \(k\) is very small, then \(f\) can be approximated by a Boolean-valued function depending on at most \(O(2^k)\) variables.
In this paper we prove a similar theorem for Boolean functions whose domain is the ‘slice’ \(\binom{[n]}{pn} = \{ x \in \{0,1\}^n : \sum_i x_i = pn \}\), where \(0 \ll p \ll 1\), with respect to their unique representation as harmonic multilinear polynomials. We show that if in the representation of \(f : \binom{[n]}{pn} \to \{0,1\}\), the total weight beyond degree \(k\) is at most \(\varepsilon \), where \(\varepsilon =\min(p, 1 - p)^{O(k)} \), then \(f\) can be \(O( \varepsilon )\)-approximated by a degree-\(k\) Boolean function on the slice, which in turn depends on \(O(2^k )\) coordinates. This proves a conjecture of Filmus, Kindler, Mossel, and Wimmer (2015). Our proof relies on hypercontractivity, along with a novel kind of a shifting procedure.
In addition, we show that the approximation rate in the Kindler-Safra theorem can be improved from \(\varepsilon + \mathrm{exp} (O(k)) \varepsilon^{5/4} \to \varepsilon + \varepsilon^2 (2 \ln (1/ \varepsilon))^k/k!\), which is tight in terms of the dependence on \(\varepsilon\) and misses at most a factor of \(2^{O(k)}\) in the lower-order term.

MSC:

06E30 Boolean functions
94D10 Boolean functions

References:

[1] Ahlswede, R.; Khachatrian, L. H., The complete intersection theorem for systems of unite sets, European Journal of Combinatorics, 18, 125-136 (1997) · Zbl 0869.05066 · doi:10.1006/eujc.1995.0092
[2] Alon, N.; Dinur, I.; Friedgut, E.; Sudakov, B., Graph products, Fourier analysis and spectral techniques, Geometric and Functional Analysis, 14, 913-940 (2004) · Zbl 1056.05104 · doi:10.1007/s00039-004-0478-3
[3] Area, I.; Dimitrov, D. K.; Godoy, E.; Ronveaux, A., Zeros of Gegenbauer and Hermite polynomials and connection coefficients, Mathematics of Computation, 73, 1937-1951 (2004) · Zbl 1048.33007 · doi:10.1090/S0025-5718-04-01642-4
[4] Bollobás, B.; Narayanan, B. P.; Raigorodskii, A. M., On the stability of the Erdős-KoRado theorem, Journal of Combinatorial Theory. Series A, 137, 64-78 (2016) · Zbl 1325.05145 · doi:10.1016/j.jcta.2015.08.002
[5] Bonami, A., Etude des coefficients Fourier des fonctiones de L^p(G), Université de Grenoble. Annales de l’Institut Fourier, 20, 335-402 (1970) · Zbl 0195.42501 · doi:10.5802/aif.357
[6] Bourgain, J.; Kahn, J.; Kalai, G.; Katznelson, Y.; Linial, N., The influence of variables in product spaces, Israel Journal of Mathematics, 77, 55-64 (1992) · Zbl 0771.60002 · doi:10.1007/BF02808010
[7] Chiarelli, J.; Hatami, P.; Saks, M., An asymptotically tight bound on the number of relevant variables in a bounded degree Boolean function, Combinatorica, 40, 237-244 (2020) · Zbl 1474.94109 · doi:10.1007/s00493-019-4136-7
[8] Das, S.; Tran, T., Removal and stability for Erdős-Ko-Rado, SIAM Journal on Discrete Mathematics, 30, 2, 1102-1114 (2016) · Zbl 1336.05141 · doi:10.1137/15M105149X
[9] Dinur, I., The PCP theorem by gap amplification, Journal of the ACM, 54, 1-44 (2007) · Zbl 1292.68074 · doi:10.1145/1236457.1236459
[10] Dinur, I.; Filmus, Y.; Harsha, P., Analyzing Boolean functions on the biased hypercube via higher-dimensional agreement tests,in Proceedings of ACM-SIAM Symposium on Discrete Algorithms, 2124-2133 (2019), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1432.68349
[11] I. Dinur, Y. Filmus and P. Harsha, Low degree almost Boolean functions are sparse juntas, preprint, https://arxiv.org/abs/1711.09428. · Zbl 1432.68349
[12] Ellis, D.; Friedgut, E.; Pilpel, H., Intersecting families of permutations, Journal of the American Mathematical Society, 24, 649-682 (2011) · Zbl 1285.05171 · doi:10.1090/S0894-0347-2011-00690-5
[13] Ellis, D.; Keller, N.; Lifshitz, N., Stability versions of Erdős-Ko-Rado type theorems via isoperimetry, Journal of the European Mathematical Society, 21, 3857-3902 (2019) · Zbl 1429.05198 · doi:10.4171/JEMS/915
[14] Falik, D.; Friedgut, E., Between Arrow and Gibbard-Satterthwaite: A representation theoretic approach, Israel Journal of Mathematics, 201, 1, 247-297 (2014) · Zbl 1302.91081 · doi:10.1007/s11856-014-1064-5
[15] Filmus, Y., An orthogonal basis for functions over a slice of the Boolean cube, Electronic Journal of Combinatorics, 23, Article no. 1.23 (2016) · Zbl 1330.05163 · doi:10.37236/4567
[16] Filmus, Y., Friedgut-Kalai-Naor theorem for slices of the Boolean cube, Chicago Journal of Theoretical Computer Science, 2016, Article no. 14 (2016) · Zbl 1401.06014
[17] Y. Filmus and F. Ihringer, Boolean constant degree functions on the slice are juntas, Discrete Mathematics 342 (2019), Article no. 111614. · Zbl 1468.06032
[18] Y. Filmus, G. Kindler, E. Mossel and K. Wimmer, Invariance principle on the slice, ACM Transactions on Computation Theory 10 (2018), Article no. 11. · Zbl 1427.60018
[19] Filmus, Y.; Mossel, E., Harmonicity and invariance on slices of the Boolean cube, in 31st Conference on Computational Complexity, Leibniz International Proceedings in Informatics, Vol. 50, 16.1-16.16 (2016), Wadern: Schloss Dagstuhl, Leibniz Zentrum für Informatik, Wadern · Zbl 1380.60021
[20] Filmus, Y.; Mossel, E., Harmonicity and invariance on slices of the Boolean cube, Probability Thory and Relted Fields, 175, 721-782 (2019) · Zbl 1423.60059 · doi:10.1007/s00440-019-00900-w
[21] Frankl, P., The shifting technique in extremal set theory,in Surveys in Combinatorics, London Mathematical Society Lecture Note Series, Vol. 123, 81-110 (1987), Cambridge: Cambridge University Press, Cambridge · Zbl 0633.05038
[22] Frankl, P.; Graham, R. L., Old and new proofs of the Erdos-Ko-Rado theorem, Journal of Sichuan University. Natural Science Edition, 26, 112-122 (1989) · Zbl 0716.05039
[23] Frankl, P.; Tokushige, N., Invitation to intersection problems for finite sets, Journal of Combinatorial Theory. Series A, 144, 157-211 (2016) · Zbl 1343.05153 · doi:10.1016/j.jcta.2016.06.017
[24] Friedgut, E., Boolean functions with low average sensitivity depend on few coordinates, Combinatorica, 18, 1, 27-35 (1998) · Zbl 0909.06008 · doi:10.1007/PL00009809
[25] Friedgut, E., On the measure of intersecting families, uniqueness and stability, Combinatorica, 28, 503-528 (2008) · Zbl 1199.05319 · doi:10.1007/s00493-008-2318-9
[26] Friedgut, E.; Kalai, G.; Naor, A., Boolean functions whose Fourier transform is concentrated on the first two levels, Advances in Applied Mathematics, 29, 427-437 (2002) · Zbl 1039.91014 · doi:10.1016/S0196-8858(02)00024-6
[27] Ghandehari, M.; Hatami, H., Fourier analysis and large independent sets in powers of complete graphs, Journal of Combinatorial Theory. Series B, 98, 1, 164-172 (2008) · Zbl 1127.05069 · doi:10.1016/j.jctb.2007.06.003
[28] Graham, B.; Grimmett, G. R., Influence and sharp-threshold theorems for monotonic measures, Annals of Probability, 34, 1726-1745 (2006) · Zbl 1115.60099 · doi:10.1214/009117906000000278
[29] Jendrej, J.; Oleszkiewicz, K.; Wojtaszczyk, J. O., On some extensions of the FKN theorem, Theory of Computation, 11, 445-469 (2015) · Zbl 1352.60029 · doi:10.4086/toc.2015.v011a018
[30] Kahn, J.; Kalai, G.; Linial, N., The influence of variables on Boolean functions,in 29th Annual Symposium on Foundations of Computer Science, 68-80 (1988), Los Alamitos, CA: Institute of Electrical and Electronics Engineers, Los Alamitos, CA
[31] Kalai, G., A Fourier-theoretic perspective on the Condorcet paradox and Arrow’s theorem, Advances in Applied Mathematics, 29, 3, 412-426 (2002) · Zbl 1038.91027 · doi:10.1016/S0196-8858(02)00023-4
[32] I. Karpas, Two results on union-closed families, https://arxiv.org/abs/1708.01434.
[33] G. Kindler and S. Safra, Noise-resistant Boolean functions are juntas, manuscript, 2002.
[34] Lee, T-Y; Yau, H-T, Logarithmic Sobolev inequality for some models of random walks, Annals of Probability, 26, 1855-1873 (1998) · Zbl 0943.60062 · doi:10.1214/aop/1022855885
[35] Montanaro, A.; Osborne, T., Quantum Boolean functions, Chicago Journal of Theoretical Computer Science, 2010, Article no. 1 (2010) · Zbl 1286.68161 · doi:10.4086/cjtcs.2010.001
[36] Mossel, E.; O’Donnell, R.; Oleszkiewicz, K., Noise stability of functions with low influences: Invariance and optimality, Annals of Mathematics, 175, 1283-1327 (2012) · Zbl 1267.11010 · doi:10.4007/annals.2012.175.3.6
[37] Nayar, P., FKN theorem on the biased cube, Colloquium Mathematicum, 137, 253-261 (2014) · Zbl 1309.42040 · doi:10.4064/cm137-2-9
[38] Nisan, N.; Szegedy, M., On the degree of Boolean functions as real polynomials, Computational Complexity, 4, 301-313 (1994) · Zbl 0829.68047 · doi:10.1007/BF01263419
[39] O’Donnell, R., Analysis of Boolean Functions (2014), New York: Cambridge University Press, New York · Zbl 1336.94096 · doi:10.1017/CBO9781139814782
[40] O’Donnell, R.; Wimmer, K., KKL, Kruskal-Katona, and monotone nets, SIAM Journal on Computing, 42, 2375-2399 (2013) · Zbl 1285.68075 · doi:10.1137/100787325
[41] Panconesi, A.; Srinivasan, A., Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds, SIAM Journal on Computing, 26, 350-368 (1997) · Zbl 0867.05063 · doi:10.1137/S0097539793250767
[42] A. Rubinstein, Boolean functions whose Fourier transform is concentrated on pair-wise disjoint subsets of the inputs, M. Sc. thesis, Tel Aviv University, 2012.
[43] Samorodnitsky, A., On the entropy of a noisy function, Institute of Electrical and Electronics Engineers Transactions on Information Theory, 62, 5446-5464 (2016) · Zbl 1359.94359 · doi:10.1109/TIT.2016.2584625
[44] Srinivasan, M. K., Symmetric chains, Gelfand-Tsetlin chains, and the Terwilliger algebra of the binary Hamming scheme, Journal of Algebraic Combinatorics, 34, 301-322 (2011) · Zbl 1229.05298 · doi:10.1007/s10801-010-0272-2
[45] Szego, G., Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23 (1975), Providence, RI: American Mathematical Society, Providence, RI · JFM 61.0386.03
[46] J. Wellens, A tighter bound on the number of relevant variables in a bounded degree Boolean function, https://arxiv.org/abs/1903.08214.
[47] Wimmer, K., Low influence functions over slices of the Boolean hypercube depend on few coordinates,in IEEE 29th Conference on Computational Complexity-CCC 2014, 120-131 (2014), Los Alamitos, CA: IEEE Computer Society, Los Alamitos, CA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.