×

Combinatorial generation via permutation languages. I: Fundamentals. (English) Zbl 1484.05009

Summary: In this work we present a general and versatile algorithmic framework for exhaustively generating a large variety of different combinatorial objects, based on encoding them as permutations. This approach provides a unified view on many known results and allows us to prove many new ones. In particular, we obtain the following four classical Gray codes as special cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an \(n\)-element set by adjacent transpositions; the binary reflected Gray code to generate all \(n\)-bit strings by flipping a single bit in each step; the Gray code for generating all \(n\)-vertex binary trees by rotations due to J. M. Lucas et al. [J. Algorithms 15, No. 3, 343–366 (1993; Zbl 0782.68090)]; the Gray code for generating all partitions of an \(n\)-element ground set by element exchanges due to R. Kaye [Inf. Process. Lett. 5, 171–173 (1976; Zbl 0357.94010)].
We present two distinct applications for our new framework: The first main application is the generation of pattern-avoiding permutations, yielding new Gray codes for different families of permutations that are characterized by the avoidance of certain classical patterns, (bi)vincular patterns, barred patterns, boxed patterns, Bruhat-restricted patterns, mesh patterns, monotone and geometric grid classes, and many others. We also obtain new Gray codes for all the combinatorial objects that are in bijection to these permutations, in particular for five different types of geometric rectangulations, also known as floorplans, which are divisions of a square into \(n\) rectangles subject to certain restrictions.
The second main application of our framework are lattice congruences of the weak order on the symmetric group \(S_n\). Recently, V. Pilaud and F. Santos [Bull. Lond. Math. Soc. 51, No. 3, 406–420 (2019; Zbl 1420.52015)] realized all those lattice congruences as \((n-1)\)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates the equivalence classes of each of those lattice congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs is Hamiltonian. We thus also obtain a provable notion of optimality for the Gray codes obtained from our framework: They translate into walks along the edges of a polytope.

MSC:

05A05 Permutations, words, matrices
05C45 Eulerian and Hamiltonian graphs
06B05 Structure theory of lattices
06B10 Lattice ideals, congruence relations
52B11 \(n\)-dimensional polytopes
52B12 Special polytopes (linear programming, centrally symmetric, etc.)

Software:

OEIS

References:

[1] Albert, Michael H.; Atkinson, M. D.; Bouvel, Mathilde; Ru\v{s}kuc, Nik; Vatter, Vincent, Geometric grid classes of permutations, Trans. Amer. Math. Soc., 365, 11, 5859-5881 (2013) · Zbl 1271.05004 · doi:10.1090/S0002-9947-2013-05804-7
[2] Albert, Michael; Brignall, Robert, \(2\times 2\) monotone grid classes are finitely based, Discrete Math. Theor. Comput. Sci., 18, 2, Paper No. 1, 10 pp. (2016) · Zbl 1348.05005 · doi:10.9734/bjast/2016/30141
[3] Asinowski, Andrei; Barequet, Gill; Bousquet-M\'{e}lou, Mireille; Mansour, Toufik; Pinter, Ron Y., Orders induced by segments in floorplans and (2-14-3, 3-41-2)-avoiding permutations, Electron. J. Combin., 20, 2, Paper 35, 43 pp. (2013) · Zbl 1267.05018 · doi:10.37236/2607
[4] Ackerman, Eyal; Barequet, Gill; Pinter, Ron Y., A bijection between permutations and floorplans, and its applications, Discrete Appl. Math., 154, 12, 1674-1684 (2006) · Zbl 1096.05002 · doi:10.1016/j.dam.2006.03.018
[5] Avis, David; Fukuda, Komei, Reverse search for enumeration, First International Colloquium on Graphs and Optimization (GOI), 1992 (Grimentz), Discrete Appl. Math., 65, 1-3, 21-46 (1996) · Zbl 0854.68070 · doi:10.1016/0166-218X(95)00026-N
[6] Avgustinovich, Sergey; Kitaev, Sergey; Potapov, Vladimir N.; Vajnovszki, Vincent, Gray coding cubic planar maps, Theoret. Comput. Sci., 616, 59-69 (2016) · Zbl 1334.94104 · doi:10.1016/j.tcs.2015.12.013
[7] Avgustinovich, Sergey; Kitaev, Sergey; Valyuzhenich, Alexandr, Avoidance of boxed mesh patterns on permutations, Discrete Appl. Math., 161, 1-2, 43-51 (2013) · Zbl 1254.05004 · doi:10.1016/j.dam.2012.08.015
[8] Avis, David; Newborn, Monroe, On pop-stacks in series, Utilitas Math., 19, 129-140 (1981) · Zbl 0461.68060
[9] Atkinson, M. D., Permutations which are the union of an increasing and a decreasing subsequence, Electron. J. Combin., 5, Research paper 6, 13 pp. (1998) · Zbl 0885.05011
[10] Baril, J.-L., Efficient generating algorithm for permutations with a fixed number of excedances, Pure Math. Appl. (PU.M.A.), 19, 2-3, 61-69 (2008) · Zbl 1224.05092
[11] Baril, Jean-Luc, More restrictive Gray codes for some classes of pattern avoiding permutations, Inform. Process. Lett., 109, 14, 799-804 (2009) · Zbl 1202.68271 · doi:10.1016/j.ipl.2009.03.025
[12] Baril, Jean-Luc, Classical sequences revisited with permutations avoiding dotted pattern, Electron. J. Combin., 18, 1, Paper 178, 18 pp. (2011) · Zbl 1229.05005
[13] Bacchelli, Silvia; Barcucci, Elena; Grazzini, Elisabetta; Pergola, Elisa, Exhaustive generation of combinatorial objects by ECO, Acta Inform., 40, 8, 585-602 (2004) · Zbl 1090.68555 · doi:10.1007/s00236-004-0139-x
[14] Bose, Prosenjit; Buss, Jonathan F.; Lubiw, Anna, Pattern matching for permutations, Inform. Process. Lett., 65, 5, 277-283 (1998) · Zbl 1338.68304 · doi:10.1016/S0020-0190(97)00209-3
[15] Br\"{a}nd\'{e}n, Petter; Claesson, Anders, Mesh patterns and the expansion of permutation statistics as sums of permutation patterns, Electron. J. Combin., 18, 2, Paper 5, 14 pp. (2011) · Zbl 1220.05003
[16] Barcucci, Elena; Del Lungo, Alberto; Pergola, Elisa; Pinzani, Renzo, ECO: a methodology for the enumeration of combinatorial objects, J. Differ. Equations Appl., 5, 4-5, 435-490 (1999) · Zbl 0944.05005 · doi:10.1080/10236199908808200
[17] Bitner, James R.; Ehrlich, Gideon; Reingold, Edward M., Efficient generation of the binary reflected Gray code and its applications, Comm. ACM, 19, 9, 517-521 (1976) · Zbl 0333.94006 · doi:10.1145/360336.360343
[18] Brignall, Robert; Engen, Michael; Vatter, Vincent, A counterexample regarding labelled well-quasi-ordering, Graphs Combin., 34, 6, 1395-1409 (2018) · Zbl 1402.05182 · doi:10.1007/s00373-018-1962-0
[19] Bernini, Antonio; Grazzini, Elisabetta; Pergola, Elisa; Pinzani, Renzo, A general exhaustive generation algorithm for Gray structures, Acta Inform., 44, 5, 361-376 (2007) · Zbl 1127.68113 · doi:10.1007/s00236-007-0053-0
[20] S. Billey, Permutation patterns for \(k\)-vexillary permutations, 2013. https://sites.math.washington.edu/ billey/papers/k.vex.html.
[21] Burstein, Alexander; Lankham, Isaiah, Restricted patience sorting and barred pattern avoidance. Permutation patterns, London Math. Soc. Lecture Note Ser. 376, 233-257 (2010), Cambridge Univ. Press, Cambridge · Zbl 1217.05010 · doi:10.1017/CBO9780511902499.013
[22] Bousquet-M\'{e}lou, Mireille; Claesson, Anders; Dukes, Mark; Kitaev, Sergey, \((2+2)\)-free posets, ascent sequences and pattern avoiding permutations, J. Combin. Theory Ser. A, 117, 7, 884-909 (2010) · Zbl 1225.05026 · doi:10.1016/j.jcta.2009.12.007
[23] B\'{o}na, Mikl\'{o}s, Exact enumeration of \(1342\)-avoiding permutations: a close link with labeled trees and planar maps, J. Combin. Theory Ser. A, 80, 2, 257-272 (1997) · Zbl 0887.05004 · doi:10.1006/jcta.1997.2800
[24] B\'{o}na, Mikl\'{o}s, Combinatorics of permutations, Discrete Mathematics and its Applications (Boca Raton), xiv+458 pp. (2012), CRC Press, Boca Raton, FL · Zbl 1255.05001 · doi:10.1201/b12210
[25] Billey, Sara; Pawlowski, Brendan, Permutation patterns, Stanley symmetric functions, and generalized Specht modules, J. Combin. Theory Ser. A, 127, 85-120 (2014) · Zbl 1300.05313 · doi:10.1016/j.jcta.2014.05.003
[26] Babson, Eric; Steingr\'{\i }msson, Einar, Generalized permutation patterns and a classification of the Mahonian statistics, S\'{e}m. Lothar. Combin., 44, Art. B44b, 18 pp. (2000) · Zbl 0957.05010
[27] Cardinal, Jean; Felsner, Stefan, Topological drawings of complete bipartite graphs, J. Comput. Geom., 9, 1, 213-246 (2018) · Zbl 1418.68165
[28] Claesson, Anders; Kitaev, Sergey, Classification of bijections between 321- and 132-avoiding permutations. 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Discrete Math. Theor. Comput. Sci. Proc., AJ, 495-506 (2008), Assoc. Discrete Math. Theor. Comput. Sci., Nancy · Zbl 1393.05010
[29] Claesson, Anders; Kitaev, Sergey; Steingr\'{\i }msson, Einar, Decompositions and statistics for \(\beta (1,0)\)-trees and nonseparable permutations, Adv. in Appl. Math., 42, 3, 313-328 (2009) · Zbl 1175.05006 · doi:10.1016/j.aam.2008.09.001
[30] Chatel, Gr\'{e}gory; Pilaud, Vincent, Cambrian Hopf algebras, Adv. Math., 311, 598-633 (2017) · Zbl 1369.05211 · doi:10.1016/j.aim.2017.02.027
[31] Cardinal, Jean; Sacrist\'{a}n, Vera; Silveira, Rodrigo I., A note on flips in diagonal rectangulations, Discrete Math. Theor. Comput. Sci., 20, 2, Paper No. 14, 22 pp. (2018) · Zbl 1401.05007
[32] Dukes, W. M. B.; Flanagan, M. F.; Mansour, T.; Vajnovszki, V., Combinatorial Gray codes for classes of pattern avoiding permutations, Theoret. Comput. Sci., 396, 1-3, 35-49 (2008) · Zbl 1138.68042 · doi:10.1016/j.tcs.2007.12.002
[33] Diaconis, Persi; Graham, Ron, Magical mathematics, xiv+244 pp. (2012), Princeton University Press, Princeton, NJ · Zbl 1230.00009
[34] Dulucq, S.; Gire, S.; Guibert, O., A combinatorial proof of J. West’s conjecture, Discrete Math., 187, 1-3, 71-96 (1998) · Zbl 0957.05007 · doi:10.1016/S0012-365X(98)80005-8
[35] Dulucq, S.; Gire, S.; West, J., Permutations with forbidden subsequences and nonseparable planar maps, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993). Discrete Math., 153, 1-3, 85-103 (1996) · Zbl 0853.05047 · doi:10.1016/0012-365X(95)00130-O
[36] Deutsch, Emeric; Munarini, Emanuele; Rinaldi, Simone, Skew Dyck paths, J. Statist. Plann. Inference, 140, 8, 2191-2203 (2010) · Zbl 1232.05010 · doi:10.1016/j.jspi.2010.01.015
[37] Do, Phan Thuan; Rossin, Dominique; Tran, Thi Thu Huong, Permutations weakly avoiding barred patterns and combinatorial bijections to generalized Dyck and Motzkin paths, Discrete Math., 320, 40-50 (2014) · Zbl 1281.05006 · doi:10.1016/j.disc.2013.12.007
[38] Do, Phan Thuan; Tran, Thi Thu Huong; Vajnovszki, Vincent, Exhaustive generation for permutations avoiding (colored) regular sets of patterns, Discrete Appl. Math., 268, 44-53 (2019) · Zbl 1419.05007 · doi:10.1016/j.dam.2019.04.014
[39] Elder, Murray, Permutations generated by a stack of depth 2 and an infinite stack in series, Electron. J. Combin., 13, 1, Research Paper 68, 12 pp. (2006) · Zbl 1097.05002
[40] Elizalde, Sergi, Generating trees for permutations avoiding generalized patterns, Ann. Comb., 11, 3-4, 435-458 (2007) · Zbl 1141.05015 · doi:10.1007/s00026-007-0328-8
[41] Elizalde, Sergi, The X-class and almost-increasing permutations, Ann. Comb., 15, 1, 51-68 (2011) · Zbl 1233.05011 · doi:10.1007/s00026-011-0082-9
[42] Fink, Alex; M\'{e}sz\'{a}ros, Karola; St. Dizier, Avery, Zero-one Schubert polynomials, Math. Z., 297, 3-4, 1023-1042 (2021) · Zbl 1464.14057 · doi:10.1007/s00209-020-02544-2
[43] Flajolet, Philippe; Sedgewick, Robert, Analytic combinatorics, xiv+810 pp. (2009), Cambridge University Press, Cambridge · Zbl 1165.05001 · doi:10.1017/CBO9780511801655
[44] Guillemot, Sylvain; Marx, D\'{a}niel, Finding small patterns in permutations in linear time. Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 82-101 (2014), ACM, New York · Zbl 1421.68083 · doi:10.1137/1.9781611973402.7
[45] Garrabrant, Scott; Pak, Igor, Permutation patterns are hard to count. Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 923-936 (2016), ACM, New York · Zbl 1410.68142 · doi:10.1137/1.9781611974331.ch66
[46] F. Gray, Pulse code communication, 1953. March 17, 1953 (filed Nov. 1947). U.S. Patent 2,632,058.
[47] Goulden, I. P.; West, J., Raney paths and a combinatorial relationship between rooted nonseparable planar maps and two-stack-sortable permutations, J. Combin. Theory Ser. A, 75, 2, 220-242 (1996) · Zbl 0864.05044 · doi:10.1006/jcta.1996.0074
[48] Hartung, Elizabeth; Hoang, Hung P.; M\"{u}tze, Torsten; Williams, Aaron, Combinatorial generation via permutation languages. Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, 1214-1225 (2020), SIAM, Philadelphia, PA · Zbl 07304097
[49] Hoang, Hung P.; M\"{u}tze, Torsten, Combinatorial generation via permutation languages. II. Lattice congruences, Israel J. Math., 244, 1, 359-417 (2021) · Zbl 1479.05182 · doi:10.1007/s11856-021-2186-1
[50] Huczynska, Sophie; Vatter, Vincent, Grid classes and the Fibonacci dichotomy for restricted permutations, Electron. J. Combin., 13, 1, Research Paper 54, 14 pp. (2006) · Zbl 1098.05003
[51] Jerrum, Mark, Counting, sampling and integrating: algorithms and complexity, Lectures in Mathematics ETH Z\"{u}rich, xii+112 pp. (2003), Birkh\"{a}user Verlag, Basel · Zbl 1011.05001 · doi:10.1007/978-3-0348-8005-3
[52] Jel\'{\i }nek, V\'{\i }t; Kyn\v{c}l, Jan, Hardness of permutation pattern matching. Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 378-396 (2017), SIAM, Philadelphia, PA · Zbl 1410.68146 · doi:10.1137/1.9781611974782.24
[53] Johnson, Selmer M., Generation of permutations by adjacent transposition, Math. Comp., 17, 282-285 (1963) · Zbl 0114.01203 · doi:10.2307/2003846
[54] Kaye, Richard, A Gray code for set partitions, Information Processing Lett., 5, 6, 171-173 (1976) · Zbl 0357.94010 · doi:10.1016/0020-0190(76)90014-4
[55] Kitaev, Sergey, Partially ordered generalized patterns, Discrete Math., 298, 1-3, 212-229 (2005) · Zbl 1070.05002 · doi:10.1016/j.disc.2004.03.017
[56] Kitaev, Sergey, Patterns in permutations and words, Monographs in Theoretical Computer Science. An EATCS Series, xxii+494 pp. (2011), Springer, Heidelberg · Zbl 1257.68007 · doi:10.1007/978-3-642-17333-2
[57] Knuth, Donald E., The art of computer programming. Vol. 3, xiv+780 pp. (1998), Addison-Wesley, Reading, MA · Zbl 0895.68054
[58] Knuth, Donald E., The art of computer programming. Vol. 4A. Combinatorial algorithms. Part 1, xv+883 pp. (2011), Addison-Wesley, Upper Saddle River, NJ · Zbl 1354.68001
[59] L. Kozma, Faster and simpler algorithms for finding large patterns in permutations, 1902.08809, 2019.
[60] Lankham, Isaiah Paul, Patience sorting and its generalizations, 103 pp. (2007), ProQuest LLC, Ann Arbor, MI
[61] Law, Shirley; Reading, Nathan, The Hopf algebra of diagonal rectangulations, J. Combin. Theory Ser. A, 119, 3, 788-824 (2012) · Zbl 1246.16027 · doi:10.1016/j.jcta.2011.09.006
[62] Lascoux, Alain; Sch\"{u}tzenberger, Marcel-Paul, Schubert polynomials and the Littlewood-Richardson rule, Lett. Math. Phys., 10, 2-3, 111-124 (1985) · Zbl 0586.20007 · doi:10.1007/BF00398147
[63] Li, Yue; Sawada, Joe, Gray codes for reflectable languages, Inform. Process. Lett., 109, 5, 296-300 (2009) · Zbl 1191.68396 · doi:10.1016/j.ipl.2008.11.007
[64] Lucas, Joan M.; Roelants van Baronaigien, D.; Ruskey, Frank, On rotations and the generation of binary trees, J. Algorithms, 15, 3, 343-366 (1993) · Zbl 0782.68090 · doi:10.1006/jagm.1993.1045
[65] Noonan, John; Zeilberger, Doron, The enumeration of permutations with a prescribed number of “forbidden” patterns, Adv. in Appl. Math., 17, 4, 381-407 (1996) · Zbl 0974.05001 · doi:10.1006/aama.1996.0016
[66] OEIS Foundation Inc., The on-line encyclopedia of integer sequences, 2020. http://oeis.org.
[67] R. Parviainen, Wilf classification of bi-vincular permutation patterns, https://arxiv.org/abs/0910.5103, 2009.
[68] Pilaud, Vincent; Santos, Francisco, Quotientopes, Bull. Lond. Math. Soc., 51, 3, 406-420 (2019) · Zbl 1420.52015 · doi:10.1112/blms.12231
[69] Pudwell, Lara Kristin, Enumeration schemes for pattern-avoiding words and permutations, 119 pp. (2008), ProQuest LLC, Ann Arbor, MI
[70] Pudwell, Lara, Enumeration schemes for permutations avoiding barred patterns, Electron. J. Combin., 17, 1, Research Paper 29, 27 pp. (2010) · Zbl 1215.05006
[71] Reading, Nathan, Cambrian lattices, Adv. Math., 205, 2, 313-353 (2006) · Zbl 1106.20033 · doi:10.1016/j.aim.2005.07.010
[72] Reading, Nathan, From the Tamari lattice to Cambrian lattices and beyond. Associahedra, Tamari lattices and related structures, Prog. Math. Phys. 299, 293-322 (2012), Birkh\"{a}user/Springer, Basel · Zbl 1292.20044 · doi:10.1007/978-3-0348-0405-9\_15
[73] Reading, Nathan, Generic rectangulations, European J. Combin., 33, 4, 610-623 (2012) · Zbl 1237.05040 · doi:10.1016/j.ejc.2011.11.004
[74] Reading, N., Finite Coxeter groups and the weak order. Lattice theory: special topics and applications. Vol. 2, 489-561 (2016), Birkh\"{a}user/Springer, Cham · Zbl 1388.20056
[75] Reading, N., Lattice theory of the poset of regions. Lattice theory: special topics and applications. Vol. 2, 399-487 (2016), Birkh\"{a}user/Springer, Cham · Zbl 1404.06004
[76] Ruskey, Frank; Sawada, Joe; Williams, Aaron, Binary bubble languages and cool-lex order, J. Combin. Theory Ser. A, 119, 1, 155-169 (2012) · Zbl 1314.68205 · doi:10.1016/j.jcta.2011.07.005
[77] Savage, Carla, A survey of combinatorial Gray codes, SIAM Rev., 39, 4, 605-629 (1997) · Zbl 1049.94513 · doi:10.1137/S0036144595295272
[78] Stankova, Zvezdelina E., Forbidden subsequences, Discrete Math., 132, 1-3, 291-316 (1994) · Zbl 0810.05011 · doi:10.1016/0012-365X(94)90242-9
[79] Smith, Rebecca; Vatter, Vincent, A stack and a pop stack in series, Australas. J. Combin., 58, 157-171 (2014) · Zbl 1295.05023
[80] Sawada, J.; Williams, A., Efficient oracles for generating binary bubble languages, Electron. J. Combin., 19, 1, Paper 42, 20 pp. (2012) · Zbl 1362.68304
[81] Tamari, Dov, The algebra of bracketings and their enumeration, Nieuw Arch. Wisk. (3), 10, 131-146 (1962) · Zbl 0109.24502
[82] B. Tenner, Database of permutation pattern avoidance, 2018. https://math.depaul.edu/bridget/patterns.html.
[83] H. F. Trotter, Algorithm 115: Perm, Commun. ACM 5 (1962), no. 8, 434-435.
[84] \'{U}lfarsson, Henning, A unification of permutation patterns related to Schubert varieties, Pure Math. Appl. (PU.M.A.), 22, 2, 273-296 (2011) · Zbl 1265.05022
[85] Vajnovszki, Vincent, Generating involutions, derangements, and relatives by ECO, Discrete Math. Theor. Comput. Sci., 12, 1, 109-122 (2010) · Zbl 1250.05015
[86] Vella, Antoine, Pattern avoidance in permutations: linear and cyclic orders, Electron. J. Combin., 9, 2, Research paper 18, 43 pp. (2002/03) · Zbl 1035.05010
[87] Vajnovszki, V.; Vernay, R., Restricted compositions and permutations: from old to new Gray codes, Inform. Process. Lett., 111, 13, 650-655 (2011) · Zbl 1260.94083 · doi:10.1016/j.ipl.2011.03.022
[88] S. D. Waton, On permutation classes defined by token passing networks, gridding matrices and pictures: three flavours of involvement. PhD thesis, University of St Andrews, 2007.
[89] West, Julian, Permutations with forbidden subsequences and stack-sortable permutations, (no paging) pp. (1990), ProQuest LLC, Ann Arbor, MI
[90] Williams, Aaron, The greedy Gray code algorithm. Algorithms and data structures, Lecture Notes in Comput. Sci. 8037, 525-536 (2013), Springer, Heidelberg · Zbl 1390.68753 · doi:10.1007/978-3-642-40104-6\_46
[91] Woo, Alexander; Yong, Alexander, When is a Schubert variety Gorenstein?, Adv. Math., 207, 1, 205-220 (2006) · Zbl 1112.14058 · doi:10.1016/j.aim.2005.11.010
[92] L. Xiang, K. Cheng, and K. Ushijima. Efficient generation of Gray codes for reflectable languages. In Computational Science and Its Applications - ICCSA 2010, International Conference, Fukuoka, Japan, March 23-26, 2010, Proceedings, Part IV, pages 418-426, 2010.
[93] B. Yao, H. Chen, C.-K. Cheng, and R. L. Graham, Floorplan representations: Complexity and connections, ACM Trans. Design Autom. Electr. Syst. 8 (2003), no. 1, 55-80.
[94] Zeilberger, Doron, A proof of Julian West’s conjecture that the number of two-stack-sortable permutations of length \(n\) is \(2(3n)!/((n+1)!(2n+1)!)\), Discrete Math., 102, 1, 85-93 (1992) · Zbl 0754.05006 · doi:10.1016/0012-365X(92)90351-F
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.