×

Decrease the order of nonlinear predictors based on generalized-Lipschitz condition. (English) Zbl 1483.93044

Summary: In this paper, a low order asymptotic predictor is introduced for nonlinear systems based on measurable outputs. Predictors play basic role in the control of dead-time systems having no delay-free input. Generalized Lipschitz condition is employed here to develop sequential sub-predictors (SSP) for complex nonlinear systems. Compared with existing synthesis methods which involve Lipschitz condition, generalized Lipschitz condition relaxes the conservative of the stability results using some modified matrix inequalities. The proposed idea can be more attractive for unstable systems due to reduce significantly the order of the predictors. Also using the proposed method, the effect of the external disturbance can be minimized based on \(H_\infty\) index. Afterward, a SSP-based controller is presented to illustrate the effectiveness of proposed method to stabilize nonlinear systems with input-delay. Finally, the predictor capability is investigated by simulation examples.

MSC:

93B11 System structure simplification
93B36 \(H^\infty\)-control
93C10 Nonlinear systems in control theory
93C43 Delay control/observation systems
Full Text: DOI

References:

[1] Ahmed-Ali, T.; Cherrier, E.; Lamnabhi-Lagarrigue, F., Cascade high gain predictors for a class of nonlinear systems, IEEE Trans. Autom. Control, 57, 1, 221-226 (2012) · Zbl 1369.93003
[2] Albertos, P.; García, P., Robust control design for long time-delay systems, J. Process Control, 19, 10, 1640-1648 (2009)
[3] Artstein, Z., Linear systems with delayed controls: a reduction, Autom. Control IEEE Trans., 27, 4, 869-879 (1982) · Zbl 0486.93011
[4] Battilotti, S., Nonlinear predictors for systems with bounded trajectories and delayed measurements, Automatica, 59, 127-138 (2015) · Zbl 1326.93061
[5] Bekiaris-Liberis, N.; Krstic, M., Stability of predictor-based feedback for nonlinear systems with distributed input delay, Automatica, 70, 195-203 (2016) · Zbl 1339.93095
[6] Bresch-Pietri, D.; Krstic, M., Delay-adaptive control for nonlinear systems, IEEE Trans. Autom. Control, 59, 5, 1203-1218 (2014) · Zbl 1360.93342
[7] Cacace, F.; Conte, F.; Germani, A.; Pepe, P., Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors, Int. J. Robust Nonlinear Control, 26, 16, 3524-3540 (2016) · Zbl 1351.93114
[8] Cacace, F.; Germani, A., Output feedback control of linear systems with input, state and output delays by chains of predictors, Automatica, 85, 455-461 (2017) · Zbl 1375.93053
[9] Deng, W.; Yao, J.; Ma, D., Time-varying input delay compensation for nonlinear systems with additive disturbance: an output feedback approach, Int. J. Robust Nonlinear Control, 28, 1, 31-52 (2018) · Zbl 1387.93075
[10] Ekramian, M.; Hosseinnia, S.; Sheikholeslam, F., General framework in designing luenberger-like non-linear observer, IET Control Theory Appl., 7, 2, 253-260 (2013)
[11] El Ghaoui, L.; Oustry, F.; AitRami, M., A cone complementarity linearization algorithm for static output-feedback and related problems, Automa. Control IEEE Trans., 42, 8, 1171-1176 (1997) · Zbl 0887.93017
[12] Fridman, E.; Dambrine, M.; Yeganefar, N., On input-to-state stability of systems with time-delay: a matrix inequalities approach, Automatica, 44, 9, 2364-2369 (2008) · Zbl 1153.93502
[13] Fu, C.; Tan, W., Linear active disturbance rejection control for processes with time delays: IMC interpretation, IEEE Access, 8, 16606-16617 (2020)
[14] Karafyllis, I.; Krstic, M., Delay-robustness of linear predictor feedback without restriction on delay rate, Automatica, 49, 6, 1761-1767 (2013) · Zbl 1360.93522
[15] Karafyllis, I.; Krstic, M., Stabilization of nonlinear delay systems using approximate predictors and high-gain observers, Automatica, 49, 12, 3623-3631 (2013) · Zbl 1315.93063
[16] Karafyllis, I.; Malisoff, M.; Mazenc, F.; Pepe, P., Recent Results on Nonlinear Delay Control Systems (2016), Springer · Zbl 1359.93002
[17] Koo, M.-S.; Choi, H.-L., Output feedback regulation of upper triangular nonlinear systems with uncertain time-varying delays in states and input, Int. J. Robust Nonlinear Control, 27, 18, 5129-5144 (2017) · Zbl 1381.93045
[18] Krstic, M., On compensating long actuator delays in nonlinear control, Autom. Control IEEE Trans., 53, 7, 1684-1688 (2008) · Zbl 1367.93437
[19] Krstic, M., Input delay compensation for forward complete and strict-feedforward nonlinear systems, Autom. Control IEEE Trans., 55, 2, 287-303 (2010) · Zbl 1368.93546
[20] Léchappé, V.; Moulay, E.; Plestan, F., Prediction-based control for LTI systems with uncertain time-varying delays and partial state knowledge, Int. J. Control, 91, 6, 1403-1414 (2018) · Zbl 1390.93606
[21] Léchappé, V.; Rouquet, S.; Gonzalez, A.; Plestan, F.; De León, J.; Moulay, E.; Glumineau, A., Delay estimation and predictive control of uncertain systems with input delay: application to a dc motor, IEEE Trans. Ind. Electron., 63, 9, 5849-5857 (2016)
[22] Lhachemi, H.; Prieur, C.; Shorten, R., Robustness of constant-delay predictor feedback for in-domain stabilization of reaction-diffusion PDES with time-and spatially-varying input delays, Automatica, 123, 109347 (2021) · Zbl 1461.93403
[23] Liu, K.-Z.; Sun, X.-M., Stabilization of nonlinear systems with time-varying input and state delays by approximate predictor, IEEE Trans. Autom. Control, 63, 10, 3449-3455 (2018) · Zbl 1423.93326
[24] Manitius, A. Z.; Olbrot, A. W., Finite spectrum assignment problem for systems with delays, Autom. Control IEEE Trans., 24, 4, 541-552 (1979) · Zbl 0425.93029
[25] Mataušek, M. R.; Ribić, A. I., Control of stable, integrating and unstable processes by the modified smith predictor, J. Process Control, 22, 1, 338-343 (2012)
[26] Mazenc, F.; Malisoff, M., Stabilization of nonlinear time-varying systems through a new prediction based approach, IEEE Trans. Autom. Control, 62, 6, 2908-2915 (2017) · Zbl 1369.93465
[27] Mazenc, F.; Mondie, S.; Francisco, R., Global asymptotic stabilization of feedforward systems with delay in the input, IEEE Trans. Autom. Control, 49, 5, 844-850 (2004) · Zbl 1365.93409
[28] Mirkin, L.; Raskin, N., Every stabilizing dead-time controller has an observer-predictor-based structure, Automatica, 39, 10, 1747-1754 (2003) · Zbl 1039.93026
[29] Najafi, M.; Hosseinnia, S.; Sheikholeslam, F.; Karimadini, M., Closed-loop control of dead time systems via sequential sub-predictors, Int. J. Control, 86, 4, 599-609 (2013) · Zbl 1278.93122
[30] Najafi, M.; Sheikholeslam, F.; Wang, Q.-G.; Hosseinnia, S., Robust h \({}_\infty\) control of single input-delay systems based on sequential sub-predictors, Control Theory Appl. IET, 8, 13, 1175-1184 (2014)
[31] Rehan, M.; Ahmad, S.; Hong, K.-S., Novel results on observer-based control of one-sided Lipschitz systems under input saturation, Eur. J. Control, 53, 29-42 (2020) · Zbl 1447.93127
[32] Rehan, M.; Hong, K.-S., Regional observer synthesis for locally Lipschitz non-linear systems, IET Control Theory Appl., 9, 16, 2348-2356 (2015)
[33] Richard, J.-P., Time-delay systems: an overview of some recent advances and open problems, Automatica, 39, 10, 1667-1694 (2003) · Zbl 1145.93302
[34] Rodríguez-Guerrero, L.; Santos-Sánchez, O.; Mondié, S., A constructive approach for an optimal control applied to a class of nonlinear time delay systems, J. Process Control, 40, 35-49 (2016)
[35] Smith, O. J., A controller to overcome dead time, ISA J., 6, 2, 28-33 (1959)
[36] Vafaei, A.; Yazdanpanah, M. J., A chain observer for nonlinear long constant delay systems: a matrix inequality approach, Automatica, 65, 164-169 (2016) · Zbl 1328.93065
[37] Wang, D.; Zhou, D.; Jin, Y.; Qin, S. J., A strong tracking predictor for nonlinear processes with input time delay, Comput. Chem. Eng., 28, 12, 2523-2540 (2004)
[38] Xu, B.; Li, H.; Campana, P. E.; Hredzak, B.; Chen, D., Dynamic regulation reliability of a pumped-storage power generating system: effects of wind power injection, Energy Convers. Manag., 222, 113226 (2020)
[39] Xu, S.; Lam, J., Improved delay-dependent stability criteria for time-delay systems, IEEE Trans. Autom. Control, 50, 3, 384-387 (2005) · Zbl 1365.93376
[40] Zhong, Q.-C., \(H{}_\infty\) control of dead-time systems based on a transformation, Automatica, 39, 2, 361-366 (2003) · Zbl 1011.93035
[41] Zhong, Q.-C.; Weiss*, G., A unified smith predictor based on the spectral decomposition of the plant, Int. J. Control, 77, 15, 1362-1371 (2004) · Zbl 1066.93018
[42] Zhou, Y.; Wang, Z., Robust motion control of a two-wheeled inverted pendulum with an input delay based on optimal integral sliding mode manifold, Nonlinear Dyn., 1-10 (2016)
[43] Zhu, Y.; Fridman, E., Sub-predictors for network-based control under uncertain large delays, Automatica, 123, 109350 (2021) · Zbl 1461.93198
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.