×

Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation. (English) Zbl 1483.92155

Summary: Model-aided understanding of the mechanism of vegetation patterns and desertification is one of the burning issues in the management of sustainable ecosystems. A pioneering model of vegetation patterns was proposed by C. A. Klausmeier [“Regular and irregular patterns in semiarid vegetation”, Science 284, No. 5421, 1826–1828 (1999; doi:10.1126/science.284.5421.1826)] that involves a downhill flow of water. In this paper, we study the diffusive Klausmeier model that can describe the flow of water in flat terrain incorporating a diffusive flow of water. It consists of a two-component reaction-diffusion system for water and plant biomass. The paper presents a numerical bifurcation analysis of stationary solutions of the diffusive Klausmeier model extensively. We numerically investigate the occurrence of diffusion-driven instability and how this depends on the parameters of the model. Finally, the model predicts some field observed vegetation patterns in a semiarid environment, e.g. spot, stripe (labyrinth), and gap patterns in the transitions from bare soil at low precipitation to homogeneous vegetation at high precipitation. Furthermore, we introduce a two-component reaction-diffusion model considering a bilinear interaction of plant and water instead of their cubic interaction. It is inspected that no diffusion-driven instability occurs as if vegetation patterns can be generated. This confirms that the diffusive Klausmeier model is the minimal reaction-diffusion model for the occurrence of vegetation patterns from the viewpoint of a two-component reaction-diffusion system.

MSC:

92D40 Ecology
35K57 Reaction-diffusion equations
34K21 Stationary solutions of functional-differential equations
35B36 Pattern formations in context of PDEs

Software:

AUTO-07P; AUTO
Full Text: DOI

References:

[1] Adeel, Z., Safriel, U., Niemeijer, D., White, R., 2005. Millennium ecosystem assessment. ecosystems and human well-being: Desertification synthesis, Tech. rep., World Resources Institute, Washington DC.
[2] Alfaro, M.; Izuhara, H.; Mimura, M., On a nonlocal system for vegetation in drylands, J. Math. Biol., 77, 6-7, 1761-1793 (2018) · Zbl 1404.92213
[3] Arif, A. I.; Howladar, A. S.; Gani, M. O., Analysis of the local dynamics of solutions in the klausmeier model of banded vegetation, J.J. Math. and Math. Sci., 30, 113-126 (2017)
[4] Bastiaansen, R., Multistability of model and real dryland ecosystems through spatial self-organization, Proc. Nat. Acad. Sci., 115, 44, 11256-11261 (2018)
[5] Bastiaansen, R., The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation, Ecol. Lett., 23, 3, 414-429 (2020)
[6] Belsky, A. J., Population and community processes in a mosaic grassland in the serengeti, tanzania, J. Ecol., 74, 3, 841-856 (1986)
[7] Borgogno, F.; D’Odorico, P.; Laio, F.; Ridolfi, L., Mathematical models of vegetation pattern formation in echohydrology, Rev. Geophys., 47, 1, 1-36 (2009)
[8] (Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; Maltitz, G. V., World Atlas of Desertification: Rethinking land degradation and sustainable land managemanet (2018), Publications Office of the European Union: Publications Office of the European Union Luxembourg)
[9] Deblauwe, V.; Barbier, N.; Caouteron, P.; Lejeune, O.; Bogaert, J., The global biogeography of semi-arid periodic vegetation patterns, Glob. Ecol. Biogeogr., 17, 6, 715-723 (2008)
[10] der Stelt, S. V., Rise and fall of periodic patterns for a generalized klausmeier-gray-scott model, J. Nonlinear Sci., 23, 1, 39-95 (2013) · Zbl 1270.35093
[11] (D’Odorico, P.; Porporato, A.; Runyan, C. W., Dryland Echohydrology (2019), Springer)
[12] Doedel, E.J., Oldeman, B.E., Chamoneys, A.R., Dercole, F., Fairgrieve, T., Kuznetsov, Y., Paffenroth, R., Sandstede, B., Wang, X., Zhang, C., 2007. AUTO-07P: Continuation and bifurcation software for ordinary differential equations.
[13] Doelman, A., Pattern formation in reaction-diffusion systems-an explicit approach, Complexity Sci., 129-182 (2018)
[14] Gandhi, P., A topographic mechanism for arcing of dryland vegetation bands, J.R. Soc. Interface, 15, 147, 20180508 (2018)
[15] Gandhi, P.; Zelnik, Y. R.; Knobloch, E., Spatially localized structures in the gray-scott model, Philosophical Transactions of the Royal Society A: Mathematical, Physical Eng. Sci., 376, 2135, 20170375 (2018) · Zbl 1425.35099
[16] Gilad, E.; Hardenberg, J. V.; Provenzale, A.; Shachak, M.; Meron, E., A mathematical model of plants as ecosystem engineers, J. Theor. Biol., 244, 4, 680-691 (2007) · Zbl 1450.92079
[17] Goward, S. N.; Tucker, C. J.; Dennis, D. G., North american vegetation patterns observed with the noaa-7 advanced very high resolution radiometer, Vegetatio, 64, 1, 3-14 (1985)
[18] Gowda, K., Assessing the robustness of spatial pattern sequences in a dryland vegetation model, Proc. Royal Soc. A: Math., Phys. Eng. Sci., 471, 2187, 20150893 (2016) · Zbl 1371.92136
[19] Gowda, K.; Riecke, H.; Silber, M., Transitions between patterned states in vegetation models for semi-arid ecosystems, Phys. Rev. E, 89, 2, Article 022701 pp. (2014)
[20] Hardenberg, V.; Meron, E.; Shachak, M.; Zarmi, Y., Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87, 19, 198101-198104 (2001)
[21] Hemming, C. F., Vegetation arcs in somaliland, J. Ecol., 53, 1, 57-67 (1965)
[22] HilleRisLambers, R.; Rietkerk, M.; Bosch, F. V.D.; Prins, H. H.T.; Kroon, H. D., Vegetation pattern formation in semiarid grazing systems, Ecology, 82, 1, 50-61 (2001)
[23] Hurwitz, A., On the conditions under which an equation has only roots with negative real parts, Selected papers on Mathematical trends in Control Theory, 65, 273-284 (1964)
[24] Kealy, B. J.; Wollkind, D. J., A nonlinear stability analysis of vegetative turing pattern formation for an interaction-diffusion plant-surface water model system in an arid flat environment, Bull. Math. Biol., 74, 4, 803-833 (2012) · Zbl 1235.92009
[25] Kéfi, S.; Rietkerk, M.; Alados, C. L.; Pueyo, Y.; Papanastasis, V. P.; EiAch, A.; Ruiter, P. C.D., Spatial vegetation patterns and imminent desertification in mediterranean arid ecosystems, Nature, 449, 7159, 213-217 (2007)
[26] Klausmeier, C. A., Regular and irregular patterns in semiarid vegetation, Science, 284, 1826-1828 (1999)
[27] Kletter, A. Y., Patterned vegetation and rainfall intermittency, J. Theor. Biol., 256, 4, 574-583 (2009) · Zbl 1400.92579
[28] Lejeune, O.; Tildi, M.; Caouteron, P., Localized vegetation patches: A self-organized response to resource scarcity, Phys. Rev. E, 66, 1 (2002), 010901 - 4
[29] Mahbutt, J. A.; Fanning, P. C., Vegetation banding in arid western australia, J. Arid Environ., 12, 1, 41-59 (1987)
[30] Mainguet, M., 1994. Desertification: Natural Background and Human Mismanagement, 2nd Edition, Springer Science and Business Media.
[31] Marasco, A., Vegetation pattern formation due to interactions between water availability and toxicity in plant-soil feedback, Bull. Math. Biol, 76, 2866-2883 (2014) · Zbl 1329.92027
[32] McGough, J. S.; Riley, K., Pattern formation in the gray-scott model, Nonlinear Anal.: Real World Appl., 5, 1, 105-121 (2004) · Zbl 1097.35071
[33] Meron, E.; Gilad, E.; Hardenberg, J. V.; Shachak, M., Vegetation patterns along a rainfall gradient, Chaos, Solitons Fractals, 19, 2, 367-376 (2004) · Zbl 1083.92039
[34] Montana, C., The colonization of bare areas in two-phases mosaics of an arid ecosystem, J. Ecol., 80, 2, 315-327 (1992)
[35] Montana, C.; Lopez-Portillo, J.; Mauchamp, A., The response of two woody species to the conditions created by a shifting ecotone in an arid ecosystem, J. Ecol., 78, 3, 789-798 (1990)
[36] Muoghalu, J. I., Desertification and vegetation monitoring, Environ. Monitoring, 2, 200-211 (2009)
[37] Murray, J. D., Mathematical Biology II: Spatial models and biomedical applications (2001), Springer: Springer New York
[38] Okayasu, T.; Aizawa, Y., Systematic analysis of periodic vegetation patterns, Progress Theoret. Phys., 106, 4, 705-720 (2001) · Zbl 0984.92040
[39] (Parsons, A. J.; Abrahams, A. D., Geomorphology of Desert Environments (2009), Springer)
[40] Pearson, J. E., Complex patterns in a simple system, Science, 261, 5118, 189-192 (1993)
[41] Pueyo, Y.; Kefi, S.; Alados, C. L.; Rietkerk, M., Dispersal strategies and spatial organization of vegetation in arid ecosystems, Oikos, 117, 10, 1522-1532 (2008)
[42] Rietkerk, M.; Boerlijst, M. C.; Langevelde, F. V.; HilleRisLambers, R.; de Koppal, J. V.; Kumar, L.; Prins, H. H.T.; de Roos, A. M., Self-organization of vegetation in arid ecosystems, Am. Nat., 160, 4, 524-530 (2002)
[43] Rietkerk, M.; Dekker, S. C.; Ruiter, P. C.D.; Koppel, J. V.D., Self-organized patchiness and catastrophic shifts in ecosystems, Science, 305, 5692, 1926-1929 (2004)
[44] Routh, E. J., A treatise on the stability of a given state of motion: particularly steady motion (1877), Macmillan and Company
[45] Scanlon, T. M.; Caylor, K. K.; Levin, S. A.; Rodriguez-Iturbe, I., Positive feedbacks promote power-law clustering of kalahari vegetation, Nature, 449, 7159, 209-212 (2007)
[46] Segoli, M.; Ungar, E. D.; Giladi, I.; Arnon, A.; Shachak, M., Untangling the positive and negative effects of shrubs on herbaceous vegetation in drylands, Lanscape Ecol., 27, 6, 899-910 (2012)
[47] Sherratt, J. A., An analysis of vegetation stripe formation in semi-arid lanscapes, J. Math. Biol., 51, 2, 183-197 (2005) · Zbl 1068.92047
[48] Sherratt, J. A., Pattern solutions of the klausmeier model for banded vegetation in semi-arid environments i, Nonlinearity, 23, 10, 2657-2675 (2010) · Zbl 1197.92047
[49] Sherratt, J. A., Pattern solutions of the klausmeier model for banded vegetation in semi-arid environments ii: Patterns with the largest possible propagation speeds, Proc. Royal Soc. A: Math., Phys. Eng. Sci., 467, 2135, 3272-3294 (2011) · Zbl 1239.92085
[50] Sherratt, J. A., Pattern solutions of the klausmeier model for banded vegetation in semi-arid environments iii: the transition between homoclinic solutions, Physica D, 242, 1, 30-41 (2013) · Zbl 1261.35144
[51] Sherratt, J. A., Pattern solutions of the klausmeier model for banded vegetation in semi-arid environments iv: Slowly moving patterns and their stability, SIAM J. Appl. Math., 73, 1, 330-350 (2013) · Zbl 1321.92083
[52] Sherratt, J. A., Pattern solutions of the klausmeier model for banded vegetation in semi-arid environments v: the transition from patterns to desert, SIAM J. Appl. Math., 73, 4, 1347-1367 (2013) · Zbl 1320.92078
[53] Siero, E., Striped pattern selection by advective reaction-diffusion systems: Resilience of banded vegetation on slopes, Chaos: An Interdisciplinary, J. Nonlinear Sci., 25, Article 036411 pp. (2015) · Zbl 1374.92167
[54] Siteur, K., Beyond turing: The response of patterned ecosystems to environmental change, Ecol. Complexity, 20, 81-96 (2014)
[55] Thiery, J. M.; d’Herbes, J.-M.; Valentin, C., A model simulating the genesis of banded vegetation patterns in niger, J. Ecol., 83, 497-507 (1995)
[56] Thompson, S.; Katul, G.; McMahon, S. M., Role of biomass spread in vegetation pattern formation within arid ecosystems, Water Resour. Res., 44, 10, 1-13 (2008)
[57] Tongway, D.; Ludwig, J., Lanscape Ecology: Function and Management (1997), CSIRO Publishing: CSIRO Publishing Australia
[58] U. Hellden, Desertification monitoring: is the desert encroaching?, Desertification Control Bulletin 17 (1988) 8-12.
[59] Valentin, C.; d’Herbés, J. M.; Poesen, J., Soil and water components of banded vegetation patterns, Catena, 37, 1-2, 1-24 (1999)
[60] White, L. P., Brousse tigrée patterns in southern niger, J. Ecol., 58, 2, 549-553 (1970)
[61] White, L. P., Vegetation stripes on sheet wash surfaces, J. Ecol., 59, 2, 615-622 (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.