×

Laser-assisted charged Higgs pair production in inert Higgs doublet model (IHDM). (English) Zbl 1483.81158

Summary: The production of a pair of charged Higgs bosons from \(e^+ e^-\) annihilation in the presence of a circularly polarized laser field is investigated in Inert Higgs doublet Model (IHDM) at \(e^+ e^-\) colliders. We have derived the analytical expression for the laser-assisted differential cross section by using the Dirac-Volkov formalism at leading order including the \(Z\) and \(\gamma\) diagrams. Since the laser-free cross section of this process depends, in the lowest order, only on the mass of the charged Higgs boson and the energy of the center of mass, we have analyzed the dependence of the total laser-assisted cross section on these parameters and also on the laser parameters such as the number of photons exchanged, the laser field intensity and its frequency. The results found indicate that the electromagnetic field decreases the order of magnitude of the total cross section as much as the laser field intensity increases or by decreasing its frequency. Moreover, it becomes high for low charged Higgs masses and low center of mass energies.

MSC:

81V22 Unified quantum theories
81V15 Weak interaction in quantum theory
78A60 Lasers, masers, optical bistability, nonlinear optics
81U35 Inelastic and multichannel quantum scattering

References:

[1] Bahk, S. W., Opt. Lett., 29, 2837 (2004)
[2] Mourou, G. A.; Tajima, T.; Bulanov, S. V., Rev. Mod. Phys., 78, 309 (2006)
[3] Muller, C.; Hatsagortsyan, K. Z.; Keitel, C. H., Phys. Rev. D, 74, Article 074017 pp. (2006)
[4] Jakha, M.; Mouslih, S.; Taj, S.; Manaut, B., Laser Phys. Lett., 18, Article 016002 pp. (2021)
[5] Roshchupkin, S. P.; Dubov, V. V.; Dubov, A., Laser Phys. Lett., 18, Article 045301 pp. (2021)
[6] Liu, A. H.; Li, S. M.; Berakdar, J., Phys. Rev. Lett., 98, Article 251803 pp. (2007)
[7] Ouali, M.; Ouhammou, M.; Taj, S.; Manaut, B., Z-boson production via the weak process \(e^+ e^- \to \mu^+ \mu^-\) in the presence of a circularly polarized laser field · Zbl 1483.81158
[8] Francken, P.; Joachain, C. J., Electron — atomic-hydrogen elastic collisions in the presence of a laser field, Phys. Rev. A, 35, 1590 (1987); Francken, P.; Attaourti, Y.; Joachain, C. J., Phys. Rev. A, 38, 1785 (1988)
[9] Attaourti, Y.; Manaut, B., Comment on “Mott scattering in strong laser fields”, Phys. Rev. A, 68, Article 067401 pp. (2003); Attaourti, Y.; Manaut, B.; Taj, S., Mott scattering in an elliptically polarized laser field, Phys. Rev. A, 70, Article 023404 pp. (2004); Attaourti, Y.; Manaut, B.; Makhoute, A., Relativistic electronic dressing in laser-assisted electron-hydrogen elastic collisions, Phys. Rev. A, 69, Article 063407 pp. (2004); Attaourti, Y.; Taj, S.; Manaut, B., Semirelativistic model for ionization of atomic hydrogen by electron impact, Phys. Rev. A, 71, Article 062705 pp. (2005); Manaut, B.; Taj, S.; Attaourti, Y., Mott scattering of polarized electrons in a strong laser field, Phys. Rev. A, 71, Article 043401 pp. (2005) · Zbl 1197.78034
[10] Hrour, E.; El Idrissi, M.; Taj, S.; Manaut, B., Relativistic elastic scattering of hydrogen atoms by positron impact with anomalous magnetic moment effects, Indian J. Phys., 89, 783-788 (2015); Manaut, B.; Attaourti, Y.; Taj, S.; Elhandi, S., Mott scattering of polarized electrons in a circularly polarized laser field, Phys. Scr., 80, Article 025304 pp. (2009); Hrour, E.; Taj, S.; Chahboune, A.; Manaut, B., Relativistic proton-impact excitation of hydrogen atom in the presence of intense laser field, Can. J. Phys., 94, 7 (2016); Taja, S.; Manaut, B.; El Idrissi, M.; Attaourti, Y.; Oufni, L., J. At. Mol. Sci., 4, 18-29 (2013) · Zbl 1175.81177
[11] Ouhammou, M., Laser Phys. Lett., 18, Article 076002 pp. (2021)
[12] Ouhammou, M.; Ouali, M.; Taj, S.; Manaut, B., Laser-assisted neutral Higgs-boson pair production in Inert Higgs Doublet Model (IHDM) · Zbl 1483.81158
[13] Mouslih, S.; Jakha, M.; Taj, S.; Manaut, B.; Siher, E., Phys. Rev. D, 102, Article 073006 pp. (2020)
[14] Baouahi, M., Laser Phys. Lett., 18, Article 106001 pp. (2021)
[15] Aad, G., Phys. Lett. B, 716, 1 (2012)
[16] Chatrchyan, S., Phys. Lett. B, 716, 30 (2012)
[17] Chatrchyan, S., Phys. Rev. D, 89, Article 092007 pp. (2014)
[18] Aad, G., Phys. Rev. Lett., 114, Article 191803 pp. (2015)
[19] Khachatryan, V., Phys. Lett. B, 755, 102 (2016)
[20] Tsukerman, I., J. Phys. Conf. Ser., 1390, Article 012030 pp. (2019)
[21] Aaboud, M., Phys. Lett. B, 787, 68 (2018)
[22] Morozumi, Takuya; Tamai, Kotaro, Prog. Theor. Exp. Phys., 2014, Article 049201 pp. (2014)
[23] Vien, V. V., Chin. J. Phys., 73, 47 (2021)
[24] Hashemi, M., Commun. Theor. Phys., 61, 69 (2014)
[25] Djouadi, A.; Kalinowski, J.; Zerwas, P. M., Z. Phys. C, 57, 569 (1993)
[26] Guasch, Jaume; Hollik, Wolfgang; Kraft, Arnd, Nucl. Phys. B, 596, 66 (2001)
[27] Arbey, A.; Mahmoudi, F.; Stål, O., Eur. Phys. J. C, 78, 182 (2018)
[28] Aoki, M.; Kanemura, S.; Yokoya, H., Phys. Lett. B, 725, 302 (2013)
[29] Gustafsson, M.; Rydbeck, S.; Lopez-Honorez, L.; Lundstrom, E., Phys. Rev. D, 86, Article 075019 pp. (2012)
[30] Krawczyk, M.; Sokolowska, D.; Swaczyna, P.; Swiezewska, B., J. High Energy Phys., 09, Article 055 pp. (2013)
[31] Díaz, M. A.; Koch, B.; Urrutia-Quiroga, S., Adv. High Energy Phys., 2016, Article 8278375 pp. (2016)
[32] Modak, K. P.; Majumdar, D., Astrophys. J. Suppl. Ser., 219, 37 (2015)
[33] Linssen, L.; Miyamoto, A.; Stanitzki, M.; Weerts, H., Physics and detectors at CLIC: CLIC conceptual design report
[34] Baer, H.; Barklow, T.; Fujii, K.; Gao, Y.; Hoang, A.; Kanemura, S.; List, J.; Logan, H. E.; Nomerotski, A.; Perelstein, M., The international linear collider technical design report - Volume 2: physics
[35] Aguilar-Saavedra, J. A., TESLA: the superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e+ e- linear collider
[36] Guimarães da Costa, J. B., CEPC conceptual design report: Volume 2 - physics & detector
[37] CEPC conceptual design report: Volume 1 - accelerator
[38] Volkov, D. M., Z. Phys., 94, 250 (1935) · Zbl 0011.18502
[39] Greiner, W.; Mueller, B., Gauge Theory of Weak Interactions (2000), Springer: Springer Berlin · Zbl 1043.81759
[40] Liu, Yao-Bei; Han, Hong-Mei; Wang, Xue-Lei, Eur. Phys. J. C, 53, 615 (2008)
[41] Zyla, P. A., Prog. Theor. Exp. Phys., 2020, Article 083C01 pp. (2020)
[42] Heinemeyer, S.; Schappacher, C., Eur. Phys. J. C, 76, 535 (2016)
[43] Bunkin, F. V.; Fedorov, M. V., Sov. Phys. JETP, 22, 844 (1966); Kroll, N. M.; Watson, K. M., Phys. Rev. A, 8, 804 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.