×

On the stability of equilibrium preserving spectral methods for the homogeneous Boltzmann equation. (English) Zbl 1483.76044

Summary: Spectral methods, thanks to the high accuracy and the possibility to use fast algorithms, represent an effective way to approximate the Boltzmann collision operator. On the other hand, the loss of some local invariants leads to the wrong long time behavior. A way to overcome this drawback, without sacrificing spectral accuracy, has been proposed recently with the construction of equilibrium preserving spectral methods. Despite the ability to capture the steady state with arbitrary accuracy, the theoretical properties of the method have never been studied in detail. In this paper, using the perturbation argument developed by F. Filbet and C. Mouhot [Trans. Am. Math. Soc. 363, No. 4, 1947–1980 (2011; Zbl 1213.82069)] for the homogeneous Boltzmann equation, we prove stability, convergence and spectrally accurate long time behavior of the equilibrium preserving approach.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1213.82069

Software:

FV_HipoDiff

References:

[1] Dimarco, G.; Pareschi, L., Numerical methods for kinetic equations, Acta Num., 23, 369-520 (2014) · Zbl 1398.65260
[2] Wu, L.; White, C.; Scanlon, T. J.; Reese, J. M.; Zhang, Y., Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, J. Comput. Phys., 250, 27-52 (2013) · Zbl 1349.76790
[3] Gamba, I. M.; Haack, J. R.; Hauck, C. D.; Hu, J., A fast spectral method for the Boltzmann collision operator with general collision kernels, SIAM J. Sci. Comput., 39, 4, B658-B674 (2017) · Zbl 1394.35310
[4] Cai, Z.; Fan, Y.; Ying, L., An entropic fourier method for the Boltzmann equation, SIAM J. Sci. Comput., 40, 5, A2858-A2882 (2018) · Zbl 1406.65093
[5] Jaiswal, S.; Hu, J.; Alexeenko, A. A., Fast deterministic solution of the full Boltzmann equation on graphics processing units, (AIP Conference Proceedings, vol. 2132 (2019), AIP Publishing LLC), 060001
[6] Hu, J.; Qi, K.; Yang, T., A new stability and convergence proof of the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation (2020), arXiv preprint arXiv:2007.05184
[7] Pareschi, L.; Russo, G., Numerical solution of the Boltzmann equation I : Spectrally accurate approximation of the collision operator, SIAM J. Numer. Anal., 37, 4, 1217-1245 (2000) · Zbl 1049.76055
[8] Mouhot, C.; Pareschi, L., Fast algorithms for computing the Boltzmann collision operator, Math. Comp., 75, 256, 1833-1852 (electronic) (2006) · Zbl 1105.76043
[9] Pareschi, L.; Russo, G., On the stability of spectral methods for the homogeneous Boltzmann equation, Transport Theory Statist. Phys., 29, 3-5, 431-447 (2000) · Zbl 1019.82016
[10] Filbet, F.; Pareschi, L.; Rey, T., On steady-state preserving spectral methods for homogeneous Boltzmann equations, C. R. Acad. Sci., Paris I, 353, 4, 309-314 (2015) · Zbl 1315.35139
[11] Pareschi, L.; Rey, T., Residual equilibrium schemes for time dependent partial differential equations, Comput. Fluids, 156, 329-342 (2017), arXiv preprint 1602:02711 · Zbl 1390.65092
[12] Filbet, F.; Mouhot, C., Analysis of spectral methods for the homogeneous Boltzmann equation, Trans. Amer. Math. Soc., 363, 1947-1980 (2011) · Zbl 1213.82069
[13] Cercignani, C.; Illner, R.; Pulvirenti, M., The mathematical theory of dilute gases, Applied Mathematical Sciences, viii+347 (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0813.76001
[14] Jin, S.; Shi, Y., A micro-macro decomposition-based asymptotic-preserving scheme for the multispecies Boltzmann equation, SIAM J. Sci. Comput., 31, 6, 4580-4606 (2009) · Zbl 1323.76099
[15] Lemou, M.; Mieussens, L., A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31, 10, 334-368 (2008) · Zbl 1187.82110
[16] Bessemoulin-Chatard, M.; Herda, M.; Rey, T., Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations,, Math. Comp. (2020) · Zbl 1440.65108
[17] Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T., Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, xiv+557 (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0658.76001
[18] Mouhot, C.; Villani, C., Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Ration. Mech. Anal., 173, 2, 169-212 (2004) · Zbl 1063.76086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.