×

The maximum exposure problem. (English) Zbl 1483.68466

Summary: Given a set of points \(P\) and axis-aligned rectangles \(\mathcal{R}\) in the plane, a point \(p\in P\) is called exposed if it lies outside all rectangles in \(\mathcal{R}\). In the max-exposure problem, given an integer parameter \(k\), we want to delete \(k\) rectangles from \(\mathcal{R}\) so as to maximize the number of exposed points. We show that the problem is NP-hard and assuming plausible complexity conjectures is also hard to approximate even when rectangles in \(\mathcal{R}\) are translates of two fixed rectangles. However, if \(\mathcal{R}\) only consists of translates of a single rectangle, we present a polynomial-time approximation scheme. For range space defined by general rectangles, we present a simple \(O(k)\) bicriteria approximation algorithm; that is by deleting \(O( k^2)\) rectangles, we can expose at least \(\Omega(1/k)\) of the optimal number of points.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68R10 Graph theory (including graph drawing) in computer science
68W25 Approximation algorithms

References:

[1] Chlamtáč, E.; Dinitz, M.; Makarychev, Y., Minimizing the union: tight approximations for small set bipartite vertex expansion, (Proceedings of the 28th SODA (2017)), 881-899 · Zbl 1411.68184
[2] Feige, U., A threshold of ln n for approximating set cover, J. ACM, 45, 4, 634-652 (1998) · Zbl 1065.68573
[3] Fowler, R. J.; Paterson, M. S.; Tanimoto, S. L., Optimal packing and covering in the plane are NP-complete, Inf. Process. Lett., 12, 3, 133-137 (1981) · Zbl 0469.68053
[4] Chlamtác, E.; Dinitz, M.; Konrad, C.; Kortsarz, G.; Rabanca, G., The densest k-subhypergraph problem, SIAM J. Discrete Math., 32, 2, 1458-1477 (2018) · Zbl 1397.68139
[5] Feige, U.; Peleg, D.; Kortsarz, G., The dense k-subgraph problem, Algorithmica, 29, 3, 410-421 (2001) · Zbl 0969.68117
[6] Asahiro, Y.; Iwama, K.; Tamaki, H.; Tokuyama, T., Greedily finding a dense subgraph, J. Algorithms, 34, 2, 203-221 (2000) · Zbl 0958.68132
[7] Arora, S.; Karger, D.; Karpinski, M., Polynomial time approximation schemes for dense instances of NP-hard problems, J. Comput. Syst. Sci., 58, 1, 193-210 (1999) · Zbl 0937.68160
[8] Bhaskara, A.; Charikar, M.; Chlamtac, E.; Feige, U.; Vijayaraghavan, A., Detecting high log-densities: an \(O( n^{1 / 4})\) approximation for densest k-subgraph, (Proceedings of the 42nd STOC (2010), ACM), 201-210 · Zbl 1293.05200
[9] Agarwal, P. K.; Pan, J., Near-linear algorithms for geometric hitting sets and set covers, (Proceedings of 30th SoCG (2014), ACM), 271 · Zbl 1398.68656
[10] Brönnimann, H.; Goodrich, M. T., Almost optimal set covers in finite VC-dimension, Discrete Comput. Geom., 14, 4, 463-479 (1995) · Zbl 0841.68122
[11] Mustafa, N. H.; Raman, R.; Ray, S., Settling the APX-hardness status for geometric set cover, (Proceedings of 55th FOCS (2014), IEEE), 541-550
[12] Chekuri, C.; Clarkson, K. L.; Har-Peled, S., On the set multi-cover problem in geometric settings, ACM Trans. Algorithms, 9, 1, 9 (2012) · Zbl 1301.68237
[13] Cygan, M.; Grandoni, F.; Leonardi, S.; Mucha, M.; Pilipczuk, M.; Sankowski, P., Approximation algorithms for union and intersection covering problems, (Proceedings of 31st FSTTCS (2011)), 28 · Zbl 1246.68262
[14] Bandyapadhyay, S.; Kumar, N.; Suri, S.; Varadarajan, K., Improved approximation bounds for the minimum constraint removal problem, (Proceedings of 21st APPROX (2018)), 2:1-2:19 · Zbl 1476.68270
[15] Eiben, E.; Gemmell, J.; Kanj, I.; Youngdahl, A., Improved results for minimum constraint removal, (Proceedings of 32nd AAAI Conference on Artificial Intelligence (2018))
[16] Bereg, S.; Kirkpatrick, D. G., Approximating barrier resilience in wireless sensor networks, (Proceedings of 5th ALGOSENSORS (2009)), 29-40
[17] Korman, M.; Löffler, M.; Silveira, R. I.; Strash, D., On the complexity of barrier resilience for fat regions and bounded ply, Comput. Geom., 72, 34-51 (2018) · Zbl 1443.68204
[18] Feige, U.; Seltser, M., On the densest k-subgraph problems (1997), Weizmann Institute of Science: Weizmann Institute of Science Jerusalem, Israel, Tech. Rep.
[19] Clarkson, K. L.; Shor, P. W., Application of random sampling in computational geometry, II, Discrete Comput. Geom., 4, 387-421 (1989) · Zbl 0681.68060
[20] Hochbaum, D. S.; Maass, W., Approximation schemes for covering and packing problems in image processing and VLSI, J. ACM, 32, 1, 130-136 (1985) · Zbl 0633.68027
[21] Kumar, N.; Sintos, S.; Suri, S., The maximum exposure problem, (APPROX/RANDOM 2019 (2019)), 19:1-19:20 · Zbl 07650086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.