×

Sensitivity analysis of optimal control problems governed by nonlinear Hilfer fractional evolution inclusions. (English) Zbl 1483.49035

The authors consider a control problem for a nonlinear evolution inclusion with a Hilfer fractional derivative in the time variable. This includes the Riemann-Liouville and the Caputo fractional derivatives. The initial condition is given by a Riemann-Liouville integral. The main results in the paper refer to the stability of the problem with respect to the initial conditions and parameters. For this purpose it is also studied the existence and compactness properties of the mild solutions corresponding to the differential inclusion.

MSC:

49K40 Sensitivity, stability, well-posedness
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Aubin, JP; Cellina, A., Differential Inclusions (1984), New York: Springer-Verlag, New York · Zbl 0538.34007 · doi:10.1007/978-3-642-69512-4
[2] Balder, EJ, Necessary and sufficient conditions for \(L^1\)-strong weak lower semicontinuity of integral functionals, Nonlinear Anal., 11, 1399-1404 (1987) · Zbl 0638.49004 · doi:10.1016/0362-546X(87)90092-7
[3] Benedetti, I.; Loi, NV; Malaguti, L., Nonlocal problems for differential inclusions in Hilbert spaces, Set-Valued Var. Anal., 22, 639-656 (2014) · Zbl 1312.34097 · doi:10.1007/s11228-014-0280-9
[4] Benedetti, I.; Malaguti, L.; Taddei, V., Semilinear evolution equations in abstract spaces and applications, Rend. Istit. Mat. Univ. Trieste., 44, 371-388 (2012) · Zbl 1272.34084
[5] Chen, PY; Zhang, XP; Li, YX, Approximation technique for fractional evolution equations with nonlocal integral conditions, Mediterr. J. Math., 14, 226 (2017) · Zbl 1387.35604 · doi:10.1007/s00009-017-1029-0
[6] Denkowski, Z.; Migórski, S.; Papageorgiu, N., An Introduction to Nonlinear Analysis (Theory) (2003), Boston: Kluwer Academic Publishers, Boston · Zbl 1040.46001 · doi:10.1007/978-1-4419-9158-4
[7] Frankowska, H., A priori estimates for operational differential inclusions, J. Differ. Equ., 84, 100-128 (1990) · Zbl 0705.34016 · doi:10.1016/0022-0396(90)90129-D
[8] Gu, HB; Trujillo, JJ, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257, 344-354 (2015) · Zbl 1338.34014
[9] He, JW; Zhang, L.; Zhou, Y.; Ahmad, B., Existence of solutions for fractional difference equations via topological degree methods, Adv. Diff. Equ., 2018, 153 (2018) · Zbl 1446.39008 · doi:10.1186/s13662-018-1610-2
[10] Heymans, N.; Podlubny, I., Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta, 45, 765-771 (2006) · doi:10.1007/s00397-005-0043-5
[11] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[12] Hu, S.; Papageorgiou, NS, Handbook of Multivalued Analysis (Theory) (1997), Dordrecht Boston, London: Kluwer Academic Publishers, Dordrecht Boston, London · Zbl 0887.47001 · doi:10.1007/978-1-4615-6359-4
[13] Ito, K.; Kunisch, K., Sensitivity analysis of solutions to optimization problems in Hilbert spaces with applications to optimal control and estimation, J. Diff. Equat., 99, 1-40 (1992) · Zbl 0790.49028 · doi:10.1016/0022-0396(92)90133-8
[14] Jiang, YR; Huang, NJ; Yao, JC, Solvability and optimal control of semilinear nonlocal fractional evolution inclusion with Clarke subdifferential, Appl. Ana., 96, 14, 2349-2366 (2017) · Zbl 1380.34095 · doi:10.1080/00036811.2017.1321111
[15] Kamenskii, M.; Obukhovskii, V.; Zecca, P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces (2001), New York: De Gruyter Berlin, New York · Zbl 0988.34001 · doi:10.1515/9783110870893
[16] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[17] Li, XW; Li, YX; Liu, ZH; Li, J., Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions, Fract. Calc. Appl. Anal., 21, 1439-1470 (2018) · Zbl 1429.49031 · doi:10.1515/fca-2018-0076
[18] Li, XW; Liu, ZH, Sensitivity analysis of optimal control problems described by differential hemivariational inequalities, SIAM J. Control Optim., 56, 3569-3597 (2018) · Zbl 1400.49026 · doi:10.1137/17M1162275
[19] Lightbourne, JH; Rankin, SM, A partial functional differential equation of Sobolev type, J. Math. Anal. Appl., 93, 328-337 (1983) · Zbl 0519.35074 · doi:10.1016/0022-247X(83)90178-6
[20] Migórski, S., Sensitivity analysis of distributed-parameter optimal control problems for nonlinear parabolic equations, J. Optim. Theory Appl., 87, 595-613 (1995) · Zbl 0834.49005 · doi:10.1007/BF02192136
[21] Migórski, S., The Rothe method for multi-term time fractional integral diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 24, 2, 719-735 (2019) · Zbl 1516.35440
[22] Migórski, S.; Ochal, A.; Sofonea, M., Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems (2013), New York: Springer-Verlag, New York · Zbl 1262.49001 · doi:10.1007/978-1-4614-4232-5
[23] Nyamoradi, N.; Zhou, Y.; Ahmad, B.; Alsaedi, A., Variational approach to homoclinic solutions for fractional Hamiltonian systems, J. Optim. Theory Appl., 174, 1, 223-237 (2017) · Zbl 1380.37122 · doi:10.1007/s10957-017-1086-3
[24] Papageorgiou, NS, Sensitivity analysis of evolution inclusions and its applications to the variational stability of optimal control problems, Houston J. Math., 16, 509-522 (1990) · Zbl 0721.49028
[25] Papageorgiou, NS, On the variational stability of a class of nonlinear parabolic optimal control problems, Z. Anal. Anwend., 15, 245-262 (1996) · Zbl 0844.49020 · doi:10.4171/ZAA/697
[26] Papageorgiou, NS; Kyritsi, S., Handbook of Applied Analysis (2009), New York: Springer-Verlag, New York · Zbl 1189.49003
[27] Papageorgiou, NS; Radulescu, VD; Repovš, DD, Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions, Advances in Nonlinear Anal., 6, 199-235 (2017) · Zbl 1365.49023 · doi:10.1515/anona-2016-0096
[28] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), New York: Springer-Verlag, New York · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[29] Timoshin, SA, Variational stability of some optimal control problems describing hysteresis effects, SIAM J. Control Optim., 52, 4, 2348-2370 (2014) · Zbl 1302.49037 · doi:10.1137/130950446
[30] Tolstonogov, AA, Variational stability of optimal control problems involving subdifferential operators, Sb. Math., 202, 583-619 (2011) · Zbl 1220.49012 · doi:10.1070/SM2011v202n04ABEH004157
[31] Wang, JR; Ibrahim, AG; O’Regan, D., Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions, J. Fixed Point Theory Appl., 20, 2, 59 (2018) · Zbl 1398.34088 · doi:10.1007/s11784-018-0534-5
[32] Wang, JR; Zhang, YR, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 63, 8, 1181-1190 (2014) · Zbl 1296.34034 · doi:10.1080/02331934.2014.906597
[33] Yang, M.; Wang, QR, Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions, Math. Methods Appl. Sci., 40, 1126-1138 (2017) · Zbl 1366.34012 · doi:10.1002/mma.4040
[34] Yakar, C.; Arslan, M., Quasilinearization method for causal terminal value problems involving Riemann-Liouville fractional derivatives, Electron. J. Differ. Equ., 2019, 11, 1-11 (2019) · Zbl 1406.34025
[35] Ye, HP; Gao, JM; Ding, YS, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328, 1075-1081 (2007) · Zbl 1120.26003 · doi:10.1016/j.jmaa.2006.05.061
[36] Zhou, Y., Attractivity for fractional differential equations in Banach space, Appl. Math. Lett., 75, 1-6 (2018) · Zbl 1380.34025 · doi:10.1016/j.aml.2017.06.008
[37] Zhou, Y.; Jiao, F., Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59, 1063-1077 (2010) · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
[38] Zhu, QJ, On the solution set of differential inclusions in Banach space, J. Diff. Equat., 93, 213-237 (1991) · Zbl 0735.34017 · doi:10.1016/0022-0396(91)90011-W
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.