×

Shilnikov-type dynamics in three-dimensional piecewise smooth maps. (English) Zbl 1483.37060

Summary: We show the existence of Shilnikov-type dynamics and bifurcation behaviour in general discrete three-dimensional piecewise smooth maps and give analytical results for the occurence of such dynamical behaviour. Our main example in fact shows a ‘two-sided’ Shilnikov dynamics, i.e. simultaneous looping and homoclinic intersection of the one-dimensional eigenmanifolds of fixed points on both sides of the border. We also present two complementary methods to analyse the return time of an orbit to the border: one based on recursion and another based on complex interpolation.

MSC:

37G20 Hyperbolic singular points with homoclinic trajectories in dynamical systems
37G35 Dynamical aspects of attractors and their bifurcations

References:

[1] Arecchi, F.; Meucci, R.; Gadomski, W., Laser dynamics with competing instabilities, Phys Rev Lett, 58, 21, 2205 (1987)
[2] Avrutin, V.; Zhusubaliyev, Z. T.; Saha, A.; Banerjee, S.; Sushko, I.; Gardini, L., Dangerous bifurcations revisited, Int J Bifurcation Chaos, 26, 14, 1630040 (2016) · Zbl 1357.37076
[3] Braun, T.; Lisboa, J. A.; Gallas, J. A., Evidence of homoclinic chaos in the plasma of a glow discharge, Phys Rev Lett, 68, 18, 2770 (1992)
[4] De, S.; Dutta, P. S.; Banerjee, S.; Roy, A. R., Local and global bifurcations in three-dimensioanl, continuous, piecewise smooth maps, Int J Bifurcation Chaos, 21, 1617-1636 (2011) · Zbl 1248.37041
[5] de Tomasi, F.; Hennequin, D.; Zambon, B.; Arimondo, E., Instabilities and chaos in an infrared laser with saturable absorber: experiments and vibrorotational model, JOSA B, 6, 1, 45-57 (1989)
[6] di Bernardo, M., Normal forms of border collisions in high-dimensional nonsmooth maps, Circuits and systems, 2003. ISCAS’03. Proceedings of the 2003 international symposium on, volume 3, pages III-III (2003), IEEE
[7] Hsieh P.-F., Sibuya Y.. Fundamental theorems of ordinary differential equations. 1999. · Zbl 0924.34001
[8] Jameson, G. J., Counting zeros of generalised polynomials: Descartes’ rule of signs and Laguerre’s extensions, Math Gaz, 90, 518, 223-234 (2006)
[9] Patra, M.; Banerjee, S., Bifurcation of quasiperiodic orbit in a 3d piecewise linear map, Int J Bifurcation Chaos, 27, 10, 1730033 (2017) · Zbl 1380.37107
[10] Pisarchik, A.; Meucci, R.; Arecchi, F., Discrete homoclinic orbits in a laser with feedback, Phys Rev E, 62, 6, 8823 (2000)
[11] Pisarchik, A.; Meucci, R.; Arecchi, F., Theoretical and experimental study of discrete behavior of Shilnikov chaos in a Co2 laser, Eur Phys J D, 13, 3, 385-391 (2001)
[12] Roy, I.; Roy, A. R., Border collision bifurcations in three-dimensional piecewise smooth systems, Int J Bifurcation Chaos, 18, 577-586 (2008) · Zbl 1143.37306
[13] Saha A., Banerjee S. Existence and stability of periodic orbits in n-dimensional piecewise linear continuous maps. 2015. arXiv:1504.01899.
[14] Shilnikov, L. P., A case of the existence of a denumerable set of periodic motions, Dokl Akad Nauk SSSR, 160, 558-561 (1965) · Zbl 0136.08202
[15] Silva, C. P., Shil’nikov’s theorem-a tutorial, IEEE Trans Circuits Syst I, 40, 10, 675-682 (1993) · Zbl 0850.93352
[16] Tossavainen, T., The lost cousin of the fundamental theorem of algebra, Math Mag, 80, 4, 290-294 (2007) · Zbl 1195.00056
[17] Tresser, C., About some theorems by lp šil’nikov, Ann Inst H Poincaré Phys Théor, 40, 4, 441-461 (1984) · Zbl 0556.58025
[18] Viktorov, E. A.; Klemer, D. R.; Karim, M. A., Shil’nikov case of antiphase dynamics in a multimode laser, Opt Commun, 113, 4-6, 441-448 (1995)
[19] Zhou, T.; Chen, G.; Yang, Q., Constructing a new chaotic system based on the Silnikov criterion, Chaos Solitons Fractals, 19, 4, 985-993 (2004) · Zbl 1053.37015
[20] Gonchenko, A.; Gonchenko, S.; Kazakov, A.; Turaev, D., Simple scenarios of onset of chaos in three-dimensional maps, Int J Bifurcation Chaos, 24, 8, 1440005 (2014) · Zbl 1300.37024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.