×

On eventually always hitting points. (English) Zbl 1483.37008

Summary: We consider dynamical systems \((X,T,\mu)\) which have exponential decay of correlations for either Hölder continuous functions or functions of bounded variation. Given a sequence of balls \((B_n)_{n=1}^\infty\), we give sufficient conditions for the set of eventually always hitting points to be of full measure. This is the set of points \(x\) such that for all large enough \(m\), there is a \(k < m\) with \(T^k (x) \in B_m\). We also give an asymptotic estimate as \(m\rightarrow\infty\) on the number of \(k < m\) with \(T^k (x) \in B_m\). As an application, we prove for almost every point \(x\) an asymptotic estimate on the number of \(k \le m\) such that \(a_k\ge m^t\), where \(t\in (0,1)\) and \(a_k\) are the continued fraction coefficients of \(x\).

MSC:

37A50 Dynamical systems and their relations with probability theory and stochastic processes
37E05 Dynamical systems involving maps of the interval
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
11J70 Continued fractions and generalizations

References:

[1] Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics (1975), Berlin-New York: Springer-Verlag, Berlin-New York · Zbl 0308.28010 · doi:10.1007/BFb0081279
[2] Bugeaud, Y.; Liao, L., Uniform Diophantine approximation related to \(b\)-ary and \(\beta \)-expansions, Ergod. Theory Dyn. Syst., 36, 1, 1-22 (2016) · Zbl 1354.37012 · doi:10.1017/etds.2014.66
[3] Chernov, N., Decay of correlations and dispersing billiards, J. Stat. Phys., 94, 3-4, 513-556 (1999) · Zbl 1047.37503 · doi:10.1023/A:1004581304939
[4] Chernov, N.; Kleinbock, D., Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122, 1, 1-27 (2001) · Zbl 0997.37002 · doi:10.1007/BF02809888
[5] Galatolo, S., Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14, 5, 797-805 (2007) · Zbl 1134.37004 · doi:10.4310/MRL.2007.v14.n5.a8
[6] Haydn, N.; Nicol, M.; Persson, T.; Vaienti, S., A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems, Ergod. Theory Dyn. Syst., 33, 2, 475-498 (2013) · Zbl 1384.37041 · doi:10.1017/S014338571100099X
[7] Kelmer, D., Shrinking targets for discrete time flows on hyperbolic manifolds, Geom. Funct. Anal., 27, 5, 1257-1287 (2017) · Zbl 1380.37005 · doi:10.1007/s00039-017-0421-z
[8] Kelmer, D., Oh, H.: Exponential mixing and shrinking targets for geodesic flow on geometrically finite hyperbolic manifolds, (2018) arXiv:1812.05251
[9] Kelmer, D.; Yu, S., Shrinking targets problems for flows on homogeneous spaces, Trans. Am. Math. Soc., 372, 9, 6283-6314 (2019) · Zbl 1426.37006 · doi:10.1090/tran/7783
[10] Kim, DH, The dynamical Borel-Cantelli lemma for interval maps, Discrete Contin. Dyn. Syst., 17, 4, 891-900 (2007) · Zbl 1120.37004 · doi:10.3934/dcds.2007.17.891
[11] Kirsebom, M.; Kunde, Ph; Persson, T., Shrinking targets and eventually always hitting points for interval maps, Nonlinearity, 33, 2, 892-914 (2020) · Zbl 1440.37048 · doi:10.1088/1361-6544/ab5160
[12] Kleinbock, D., Konstantoulas, I., Richter, F. K.: Zero-one laws for eventually always hitting points in mixing systems, (2019) arXiv:1904.08584
[13] Kleinbock, D.; Wadleigh, N., An inhomogeneous Dirichlet Theorem via shrinking targets, Compos. Math., 155, 7, 1402-1423 (2019) · Zbl 1429.11124 · doi:10.1112/S0010437X1900719X
[14] Lasota, A.; Yorke, JA, On the existence of invariant measures for piecewise monotonic transformations, Trans. Am. Math. Soc., 186, 1973, 481-488 (1974) · Zbl 0298.28015
[15] Liverani, C.; Saussol, B.; Vaienti, S., Conformal measure and decay of correlation for covering weighted systems, Ergod. Theory Dyn. Syst., 18, 6, 1399-1420 (1998) · Zbl 0915.58061 · doi:10.1017/S0143385798118023
[16] Rychlik, M., Bounded variation and invariant measures, Stud. Math., 76, 1, 69-80 (1983) · Zbl 0575.28011 · doi:10.4064/sm-76-1-69-80
[17] Xing, V., Dynamical Borel-Cantelli Lemmas, Discrete Contin. Dyn. Syst., 41, 4, 1737-1754 (2021) · Zbl 1472.37009 · doi:10.3934/dcds.2020339
[18] Young, L-S, Decay of correlations for certain quadratic maps, Commun. Math. Phys., 146, 1, 123-138 (1992) · Zbl 0760.58030 · doi:10.1007/BF02099211
[19] Young, L-S, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math., 147, 3, 585-650 (1998) · Zbl 0945.37009 · doi:10.2307/120960
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.