×

Lump, lumpoff, rogue wave, breather wave and periodic lump solutions for a \((3+1)\)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics and plasma physics. (English) Zbl 1483.35166

Summary: Under investigation in this paper is a \((3+1)\)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics and plasma physics. With the help of symbolic computation, we obtain and discuss the influence of the perturbed effect and disturbed wave velocity along the transverse spatial coordinate on the lump, lumpoff, rogue wave, breather wave and periodic lump solutions: When the value of \(\delta_2\) decreases to \(-1\), the amplitude of the lump wave becomes smaller; When the value of \(\delta_1\) increases to 5, the location of the lump wave moves along the positive direction of the \(y\) (a transverse spatial coordinate) axis; When the value of \(\delta_2\) decreases to 0.5, the location of the stripe soliton moves along the negative direction of the \(y\) axis and the amplitude of the lump wave becomes smaller; When the value of \(\delta_2\) decreases to \(-0.4\), the amplitude of the rogue wave becomes smaller; When the value of \(\delta_1\) increases to 5, breather waves propagate along the positive \(t\) (the temporal coordinate) direction and distance between the adjacent crests becomes shorter; When the value of \(\delta_2\) decreases to \(-1\), breather waves propagate along the negative \(t\) direction and distance between the adjacent crests becomes shorter; When the value of \(\delta_2\) decreases to 0.5, periodic lump waves move along the positive direction of the \(y\) axis. Lump solutions have more parameters than those in the existing literature. Lumpoff wave is generated from the process of the interaction between the lump wave and one stripe soliton. Moving path of the lumpoff wave is investigated via the moving path of the lump wave. Besides, we derive the rogue wave, breather wave and periodic lump solutions.

MSC:

35Q35 PDEs in connection with fluid mechanics
35D99 Generalized solutions to partial differential equations
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
82D10 Statistical mechanics of plasmas
Full Text: DOI

References:

[1] Baskonus, H. M.; Sulaiman, T. A.; Bulut, H., New solitary wave solutions to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff and the Kadomtsev-Petviashvili hierarchy equations, Indian J. Phys., 91, 1237-1243 (2017) · doi:10.1007/s12648-017-1033-z
[2] Baskonus, H. M.; Sulaiman, T. A.; Bulut, H., Novel complex and hyperbolic forms to the strain wave equation in microstructured solids, Opt. Quant. Electron., 50, 14 (2018) · doi:10.1007/s11082-017-1279-x
[3] Baskonus, H. M.; Sulaiman, T. A.; Bulut, H., Bright, dark optical and other solitons to the generalized higher-order NLSE in optical fibers, Opt. Quant. Electron., 50, 253 (2018) · doi:10.1007/s11082-018-1522-0
[4] Baskonus, H. M.; Sulaiman, T. A.; Bulut, H., New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation, Mod. Phys. Lett. B, 33, 1950196 (2019) · doi:10.1142/S0217984919502518
[5] Chabchoub, A.; Hoffmann, N. P.; Akhmediev, N., Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106, 204502 (2011) · doi:10.1103/PhysRevLett.106.204502
[6] Chen, S. T.; Ma, W. X., Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation, Comput. Math. Appl., 76, 1680-1685 (2018) · Zbl 1434.35153 · doi:10.1016/j.camwa.2018.07.019
[7] Dong, M. J.; Tian, S. F.; Yan, X. W., Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation, Comput. Math. Appl., 75, 957-964 (2018) · Zbl 1409.35180 · doi:10.1016/j.camwa.2017.10.037
[8] Feng, L. L.; Zhang, T. T., Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation, Appl. Math. Lett., 78, 133-140 (2018) · Zbl 1384.35119 · doi:10.1016/j.aml.2017.11.011
[9] Hadac, M.; Herr, S.; Koch, H., Well-posedness and scattering for the KP-II equation in a critical space, Ann. I. H. Poincare-Anal., 26, 917-941 (2009) · Zbl 1169.35372 · doi:10.1016/j.anihpc.2008.04.002
[10] Hirota, R., Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14, 805 (1973) · Zbl 0257.35052 · doi:10.1063/1.1666399
[11] Hu, W. Q.; Gao, Y. T.; Jia, S. L.; Zhang, Q. M.; Lan, Z. Z., Periodic wave, breather wave and travelling wave solutions of a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluids or plasmas, Eur. Phys. J. Plus, 131, 390 (2016) · doi:10.1140/epjp/i2016-16390-1
[12] Ilhan, O. A.; Bulut, H.; Sulaiman, T. A., Dynamic of solitary wave solutions in some nonlinear pseudoparabolic models and Dodd-Bullough-Mikhailov equation, Indian J. Phys., 92, 999-1007 (2018) · doi:10.1007/s12648-018-1187-3
[13] Lü, X.; Wang, J. P.; Lin, F. H., Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water, Nonlinear Dyn., 91, 1249-1259 (2018) · doi:10.1007/s11071-017-3942-y
[14] Lan, Z. Z., Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett., 94, 126-132 (2019) · Zbl 1412.35050 · doi:10.1016/j.aml.2018.12.005
[15] Lan, Z. Z.; Hu, W. Q.; Guo, B. L., General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation, Appl. Math. Model., 73, 695-714 (2019) · Zbl 1481.76160 · doi:10.1016/j.apm.2019.04.013
[16] Levkov, D. G.; Panin, A. G.; Tkachev, I. I., Gravitational Bose-Einstein Condensation in the Kinetic Regime, Phys. Rev. Lett., 121, 151301 (2018) · doi:10.1103/PhysRevLett.121.151301
[17] Li, M. Z.; Tian, B.; Sun, Y., Breather wave, rogue wave and lump wave solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid, Mod. Phys. Lett. B, 32, 1850223 (2018) · doi:10.1142/S0217984918502238
[18] Liu, J. G.; He, Y., Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Nonlinear Dyn., 92, 1103-1108 (2018) · doi:10.1007/s11071-018-4111-7
[19] Mao, J. J.; Tian, S. F.; Zou, L., Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a (3+ 1)-dimensional B-type Kadomtsev-Petviashvili equation, Nonlinear Dyn., 95, 3005-3017 (2019) · Zbl 1437.37094 · doi:10.1007/s11071-018-04736-2
[20] Peng, W. Q.; Tian, S. F.; Zhang, T. T., Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation, Phys. Lett. A, 382, 2701 (2018) · Zbl 1404.35396 · doi:10.1016/j.physleta.2018.08.002
[21] Seadawy, A. R., Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves, Eur. Phys. J. Plus, 132, 29 (2017) · doi:10.1140/epjp/i2017-11313-4
[22] Senatorski, A.; Infeld, E., Simulations of two-dimensional Kadomtsev-Petviashvili soliton dynamics in three-dimensional space, Phys. Rev. Lett., 77, 2855-2858 (1996) · doi:10.1103/PhysRevLett.77.2855
[23] Sulaiman, T. A.; Bulut, H.; Yokus, A., On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering, Indian J. Phys., 93, 647-656 (2019) · doi:10.1007/s12648-018-1322-1
[24] Sulaiman, T. A.; Nuruddeen, R. I.; Mikail, B. B., Dark and singular solitons to the two nonlinear Schrödinger equations, Optik, 186, 423-430 (2019) · doi:10.1016/j.ijleo.2019.04.023
[25] Tao, Y.; He, J., Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation, Phys. Rev. E, 85, 026601 (2012) · doi:10.1103/PhysRevE.85.026601
[26] Tian, S. F.; Ma, P. L., On the Quasi-Periodic wave solutions and asymptotic analysis to a (3+1)-dimensional generalized kadomtsev-Petviashvili equation, Commun. Theor. Phys., 62, 245-258 (2014) · Zbl 1297.35210 · doi:10.1088/0253-6102/62/2/12
[27] Tu, J. M.; Tian, S. F.; Xu, M. J., Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized (3+1)-dimensional nonlinear wave in liquid with gas bubbles, Nonlinear Dyn., 83, 1199-1215 (2016) · Zbl 1351.37249 · doi:10.1007/s11071-015-2397-2
[28] Wang, X. B.; Tian, S. F.; Yan, H., On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Comput. Math. Appl., 74, 556-563 (2017) · Zbl 1387.35538 · doi:10.1016/j.camwa.2017.04.034
[29] Wazwaz, A. M., Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method, Chaos Soliton. Fract., 12, 2283-2293 (2001) · Zbl 0992.35092 · doi:10.1016/S0960-0779(00)00188-0
[30] Yan, X. W.; Tian, S. F.; Dong, M. J., Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation, Comput. Math. Appl., 76, 179-186 (2018) · Zbl 1420.35301 · doi:10.1016/j.camwa.2018.04.013
[31] Yong, X.; Ma, W. X.; Huang, Y., Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source, Comput. Math. Appl., 75, 3414-3419 (2018) · Zbl 1409.35187 · doi:10.1016/j.camwa.2018.02.007
[32] Zhou, Y.; Manukure, S.; Ma, W. X., Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation, Commun. Nonlin. Sci. Numer. Simul., 68, 56-62 (2019) · Zbl 1509.35101 · doi:10.1016/j.cnsns.2018.07.038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.