×

Boundedness and asymptotic behavior in a Keller-Segel(-Navier)-Stokes system with indirect signal production. (English) Zbl 1483.35052

Summary: This paper deals with the Keller-Segel(-Navier)-Stokes system with indirect signal production \[ \begin{cases} n_t + u \cdot \nabla n = \Delta n - \nabla \cdot ( n \nabla v ) + r n - \mu n^2, \\ v_t + u \cdot \nabla v = \Delta v - v + w, \\ w_t + u \cdot \nabla w = \Delta w - w + n, \\ u_t + \kappa ( u \cdot \nabla ) u = \Delta u - \nabla P + n \nabla \Phi, \quad \nabla \cdot u = 0 \end{cases} \eqno{(\star)} \] in a bounded and smooth domain \(\Omega \subset \mathbb{R}^N\) (\(N = 2, 3\)) with no-flux boundary for \(n, v, w\) and no-slip boundary for \(u\), where \(r \in \mathbb{R}\), \(\mu \geq 0\), \(\kappa \in \{0, 1 \}\) and \(\Phi \in W^{2 , \infty}(\Omega)\). In the case without logistic source (\(r = \mu = 0\)), it is proved that for all suitably regular initial data, the associated initial-boundary value problem for the spatially two-dimensional Navier-Stokes system (\( \star\)) admits a globally bounded classical solution. This result improves and extends the previously known ones. We point out that the same result to the corresponding two-dimensional Navier-Stokes system with direct signal production holds necessarily imposing some saturated chemotactic sensitivity, logistic damping or small total initial population mass. In the case coupled with logistic source (\(r \in \mathbb{R}\), \(\mu > 0\)), it is shown that for any reasonably regular initial data, the corresponding initial-boundary value problem for the spatially three-dimensional Stokes system (\( \star\)) possesses a globally bounded classical solution, and that this solution stabilizes toward the corresponding spatially homogeneous equilibrium with the explicit convergence rates for the cases \(r < 0\), \(r = 0\) and \(r > 0\). We underline that the global boundedness of classical solution to the corresponding three-dimensional Stokes system with direct signal production was obtained only for \(\mu \geq 23\) (or sublinear signal production), and that the convergence result to the corresponding system with direct signal production was established only for \(r = 0\) and \(\mu \geq 23\). Our results rigorously confirm that the indirect signal production mechanism genuinely contributes to the global boundedness of classical solution to the Keller-Segel(-Navier)-Stokes system.

MSC:

35B45 A priori estimates in context of PDEs
35A09 Classical solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35Q30 Navier-Stokes equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Bai, X.; Winkler, M., Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583 (2016) · Zbl 1345.35117
[2] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763 (2015) · Zbl 1326.35397
[3] Black, T., Sublinear signal production in a two-dimensional Keller-Segel-Stokes system, Nonlinear Anal., Real World Appl., 31, 593-609 (2016) · Zbl 1375.35361
[4] Black, T., Global very weak solutions to a chemotaxis-fluid system with nonlinear diffusion, SIAM J. Math. Anal., 50, 4087-4116 (2018) · Zbl 1394.35226
[5] Black, T., Global solvability of chemotaxis-fluid systems with nonlinear diffusion and matrix-valued sensitivities in three dimensions, Nonlinear Anal., 180, 129-153 (2019) · Zbl 1420.35433
[6] Cao, X., Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., Ser. A, 35, 1891-1904 (2015) · Zbl 1515.35047
[7] Cao, X., Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst., Ser. B, 22, 3369-3378 (2017) · Zbl 1370.35052
[8] Cao, X., Fluid interaction does not affect the critical exponent in a three-dimensional Keller-Segel-Stokes model, Z. Angew. Math. Phys., 71, 61 (2020) · Zbl 1439.35234
[9] Dai, F.; Liu, B., Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production, J. Differ. Equ., 269, 10839-10918 (2020) · Zbl 1458.35052
[10] Ding, M.; Wang, W.; Zhou, S.; Zheng, S., Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production, J. Differ. Equ., 268, 6729-6777 (2020) · Zbl 1435.35197
[11] Ding, M.; Lankeit, J., Generalized solutions to a chemotaxis-Navier-Stokes system with arbitrary superlinear degradation · Zbl 1483.92033
[12] Espejo, E.; Suzuki, T., Reaction terms avoiding aggregation in slow fluids, Nonlinear Anal., Real World Appl., 21, 110-126 (2015) · Zbl 1302.35102
[13] Fujie, K.; Ito, A.; Winkler, M.; Yokota, T., Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., Ser. A, 36, 151-169 (2016) · Zbl 1322.35059
[14] Fujie, K.; Senba, T., Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differ. Equ., 263, 88-148 (2017) · Zbl 1364.35120
[15] Fujie, K.; Senba, T., Blowup of solutions to a two-chemical substances chemotaxis system in the critical dimension, J. Differ. Equ., 266, 942-976 (2019) · Zbl 1406.35149
[16] Giga, Y., Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equ., 61, 186-212 (1986) · Zbl 0577.35058
[17] Herrero, M. A.; Velázquez, J. J.L., A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 24, 633-683 (1997) · Zbl 0904.35037
[18] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 183-217 (2009) · Zbl 1161.92003
[19] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107 (2005) · Zbl 1085.35065
[20] Hu, B.; Tao, Y., To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26, 2111-2128 (2016) · Zbl 1351.35076
[21] Jiang, J., Global stability of Keller-Segel systems in critical Lebesgue spaces, Discrete Contin. Dyn. Syst., Ser. A, 40, 609-634 (2020) · Zbl 1427.35108
[22] Ke, Y.; Zheng, J., An optimal result for global existence in a three-dimensional Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Differ. Equ., 58, 109 (2019) · Zbl 1412.35172
[23] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[24] Lankeit, J., Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., 258, 1158-1191 (2015) · Zbl 1319.35085
[25] Li, Y., On a Keller-Segel-Stokes system with logistic type growth: blow-up prevention enforced by sublinear signal production, Z. Angew. Math. Phys., 70, 157 (2019) · Zbl 1442.35201
[26] Li, F.; Li, Y., Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux, Discrete Contin. Dyn. Syst., Ser. B, 24, 5409-5436 (2019) · Zbl 1420.35142
[27] Li, X.; Wang, Y.; Xiang, Z., Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux, Commun. Math. Sci., 14, 1889-1910 (2016) · Zbl 1351.35073
[28] Li, X.; Xiao, Y., Global existence and boundedness in a 2D Keller-Segel-Stokes system, Nonlinear Anal., Real World Appl., 37, 14-30 (2017) · Zbl 1394.35241
[29] Liu, J.; Wang, Y., Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation, J. Differ. Equ., 262, 5271-5305 (2017) · Zbl 1377.35148
[30] Mu, C.; Lin, K., Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., Ser. A, 36, 5025-5046 (2016) · Zbl 1352.35067
[31] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, 40, 411-433 (1997) · Zbl 0901.35104
[32] Osaki, K.; Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvacioj, 44, 441-469 (2001) · Zbl 1145.37337
[33] Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M., Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51, 119-144 (2002) · Zbl 1005.35023
[34] Peng, Y.; Xiang, Z., Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux, Z. Angew. Math. Phys., 68, 68 (2017) · Zbl 1386.35189
[35] Sohr, H., The Navier-Stokes Equations: An Elementary Functional Analytic Approach (2001), Birkhäuser: Birkhäuser Basel · Zbl 0983.35004
[36] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 692-715 (2012) · Zbl 1382.35127
[37] Tao, Y.; Winkler, M., Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47, 4229-4250 (2015) · Zbl 1328.35103
[38] Tao, Y.; Winkler, M., Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66, 2555-2573 (2015) · Zbl 1328.35084
[39] Tao, Y.; Winkler, M., Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67, 138 (2016) · Zbl 1356.35054
[40] Tello, J. I.; Wrzosek, D., Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26, 2129-2162 (2016) · Zbl 1349.92133
[41] Tuval, I.; Cisneros, L.; Dombrowski, C.; Wolgemuth, C. W.; Kessler, J. O.; Goldstein, R. E., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102, 2277-2282 (2005) · Zbl 1277.35332
[42] Wang, W., A quasilinear fully parabolic chemotaxis system with indirect signal production and logistic source, J. Math. Anal. Appl., 477, 488-522 (2019) · Zbl 1421.35031
[43] Wang, Y., Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity, Math. Models Methods Appl. Sci., 27, 2745-2780 (2017) · Zbl 1378.92010
[44] Wang, Y.; Winkler, M.; Xiang, Z., Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa, Cl. Sci., XVIII, 421-466 (2018) · Zbl 1395.92024
[45] Wang, Y.; Winkler, M.; Xiang, Z., Global solvability in a three-dimensional Keller-Segel-Stokes system involving arbitrary superlinear logistic degradation, Adv. Nonlinear Anal., 10, 707-731 (2021) · Zbl 1466.92020
[46] Wang, Y.; Xiang, Z., Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, J. Differ. Equ., 259, 7578-7609 (2015) · Zbl 1323.35071
[47] Wang, Y.; Xiang, Z., Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: the 3D case, J. Differ. Equ., 261, 4944-4973 (2016) · Zbl 1345.35054
[48] Wang, Y.; Yang, L., Boundedness in a chemotaxis-fluid system involving a saturated sensitivity and indirect signal production mechanism, J. Differ. Equ., 287, 460-490 (2021) · Zbl 1464.35052
[49] Winker, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905 (2010) · Zbl 1190.92004
[50] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35, 1516-1537 (2010) · Zbl 1290.35139
[51] Winkler, M., Global large-data solutions in a chemotaxis-Navier-Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ., 37, 319-351 (2012) · Zbl 1236.35192
[52] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053
[53] Winkler, M., Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with logistic dampening, J. Differ. Equ., 257, 1056-1077 (2014) · Zbl 1293.35048
[54] Winkler, M., Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Differ. Equ., 54, 3789-3828 (2015) · Zbl 1333.35104
[55] Winkler, M., How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Am. Math. Soc., 369, 3067-3125 (2017) · Zbl 1356.35071
[56] Winkler, M., Does fluid interaction affect regularity in the three-dimensional Keller-Segel system with saturated sensitivity?, J. Math. Fluid Mech., 20, 1889-1909 (2018) · Zbl 1409.35047
[57] Winkler, M., A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: global weak solutions and asymptotic stabilization, J. Funct. Anal., 276, 1339-1401 (2019) · Zbl 1408.35132
[58] Winkler, M., Small-mass solutions in the two-dimensional Keller-Segel system coupled to the Navier-Stokes equations, SIAM J. Math. Anal., 52, 2041-2080 (2020) · Zbl 1441.35079
[59] Winkler, M., Attractiveness of constant states in logistic-type Keller-Segel systems involving subquadratic growth restrictions, Adv. Nonlinear Stud., 20, 795-817 (2020) · Zbl 1465.35065
[60] Winkler, M., Boundedness in a three-dimensional Keller-Segel-Stokes system with subcritical sensitivity, Appl. Math. Lett., 112, Article 106785 pp. (2021) · Zbl 1453.35115
[61] Winkler, M., Conditional estimates in three-dimensional chemotaxis-Stokes systems and application to a Keller-Segel-fluid model accounting for gradient-dependent flux limitation, J. Differ. Equ., 281, 33-57 (2021) · Zbl 1460.35358
[62] Winkler, M., Suppressing blow-up by gradient-dependent flux limitation in a planar Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 72, 72 (2021) · Zbl 1466.35060
[63] Winkler, M., Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with gradient-dependent flux limitation, Nonlinear Anal., Real World Appl., 59, Article 103257 pp. (2021) · Zbl 1468.35220
[64] Winkler, M., \( L^1\) solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (2021)
[65] Winkler, M., Reaction-driven relaxation in three-dimensional Keller-Segel-Navier-Stokes interaction, Commun. Math. Phys. (2021)
[66] Xiang, T., Chemotactic aggregation versus logistic damping on boundedness in the 3D minimal Keller-Segel model, SIAM J. Appl. Math., 78, 2420-2438 (2018) · Zbl 1397.35125
[67] Yu, P., Blow-up prevention by saturated chemotactic sensitivity in a 2D Keller-Segel-Stokes system, Acta Appl. Math., 169, 475-497 (2020) · Zbl 1470.35185
[68] Zhang, W.; Niu, P.; Liu, S., Large time behavior in a chemotaxis model with logistic growth and indirect signal production, Nonlinear Anal., Real World Appl., 50, 484-497 (2019) · Zbl 1435.35068
[69] Zheng, J., Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with nonlinear diffusion, J. Differ. Equ., 263, 2606-2629 (2017) · Zbl 1366.35080
[70] Zheng, J., An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differ. Equ., 267, 2385-2415 (2019) · Zbl 1472.35232
[71] Zheng, J.; Ke, Y., Blow-up prevention by nonlinear diffusion in a 2D Keller-Segel-Navier-Stokes system with rotational flux, J. Differ. Equ., 268, 7092-7120 (2020) · Zbl 1445.35290
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.