×

Bifurcation, uniqueness and multiplicity results for classes of reaction diffusion equations arising in ecology with nonlinear boundary conditions. (English) Zbl 1483.35018

Summary: We study the structure of positive solutions to steady state ecological models of the form: \[ \begin{cases} -\Delta u = \lambda uf(u) & \text{in }\Omega, \\ \alpha (u) \dfrac{\partial u}{\partial \eta}+[1-\alpha (u)]u = 0 & \text{on }\partial\Omega, \end{cases} \] where \(\Omega\) is a bounded domain in \(\mathbb{R}^n;\, n>1\) with smooth boundary \(\partial\Omega\) or \(\Omega = (0,1), \frac{\partial}{\partial\eta}\) represents the outward normal derivative on the boundary, \(\lambda\) is a positive parameter, \(f\colon [0,\infty)\to \mathbb{R}\) is a \(C^2\) function such that \(\frac{f(s)}{k-s}>0\) for some \(k>0\), and \(\alpha \colon [0,k]\to [0,1]\) is also a \(C^2\) function. Here \(f(u)\) represents the per capita growth rate, \(\alpha (u)\) represents the fraction of the population that stays on the patch upon reaching the boundary, and \(\lambda\) relates to the patch size and the diffusion rate. In particular, we will discuss models in which the per capita growth rate is increasing for small \(u\), and models where grazing is involved. We will focus on the cases when \(\alpha^{\prime} (s)\geq 0; [0,k]\), which represents negative density dependent dispersal on the boundary. We employ the method of sub-super solutions, bifurcation theory, and stability analysis to obtain our results. We provide detailed bifurcation diagrams via a quadrature method for the case \(\Omega = (0,1)\).

MSC:

35B32 Bifurcations in context of PDEs
35J61 Semilinear elliptic equations
35J66 Nonlinear boundary value problems for nonlinear elliptic equations
92D40 Ecology
Full Text: DOI

References:

[1] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003. · Zbl 1059.92051
[2] R. S. Cantrell; C. Cosner, On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains, J. Differ. Equ., 231, 768-804 (2006) · Zbl 1154.35381 · doi:10.1016/j.jde.2006.08.018
[3] R. S. Cantrell; C. Cosner, Density dependent behavior at habitat boundaries and the Allee effect, Bull. Math. Biol., 69, 2339-2360 (2007) · Zbl 1298.92111 · doi:10.1007/s11538-007-9222-0
[4] R. S. Cantrell; C. Cosner; S. Martĺnez, Steady state solutions of a logistic equation with nonlinear boundary conditions, Rocky Mountain J. Math., 41, 445-455 (2011) · Zbl 1220.35057 · doi:10.1216/RMJ-2011-41-2-445
[5] M. G. Crandall; P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340 (1971) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[6] M. G. Crandall; P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52, 161-180 (1973) · Zbl 0275.47044 · doi:10.1007/BF00282325
[7] E. N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large, Proc. London Math. Soc., 53, 429-452 (1986) · Zbl 0572.35040 · doi:10.1112/plms/s3-53.3.429
[8] L. Evans, Partial Differential Equations, Graduate studies in mathematics. American Mathematical Society, 2010. · Zbl 1194.35001
[9] N. Fonseka; J. Goddard II; R. Shivaji; B. Son, A diffusive weak allee effect model with u-shaped emigration and matrix hostility, Discrete Contin. Dyn. Syst. Ser. S, 26, 5509-5517 (2021) · Zbl 1467.35178 · doi:10.3934/dcdsb.2020356
[10] N. Fonseka; R. Shivaji; J. Goddard II; Q. A. Morris; B. Son, On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model, Discrete Contin. Dyn. Syst. Ser. S, 13, 3401-3415 (2020) · Zbl 1455.35118 · doi:10.1103/physrevd.13.3410
[11] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, in Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, second edition, 1983. · Zbl 0562.35001
[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, springer, 2015.
[13] J. Goddard; E. K. Lee; R. Shivaji, Population models with nonlinear boundary conditions, Electron. J. Differ. Equ.[electronic only], 2010, 135-149 (2010) · Zbl 1204.34030
[14] J. Goddard II; Q. Morris; C. Payne; R. Shivaji, A diffusive logistic equation with U-shaped density dependent dispersal on the boundary, Topol. Methods Nonlinear Anal., 53, 335-349 (2019) · Zbl 1418.35113 · doi:10.12775/tmna.2018.047
[15] J. Goddard, II, Q. Morris, R. Shivaji and B. Son, Bifurcation curves for singular and nonsingular problems with nonlinear boundary conditions, Electron. J. Differ. Equ., 2018 (2018), 12 pp. · Zbl 1386.34047
[16] J. Goddard, II, Q. A. Morris, S. B. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction-diffusion equation arising in population dynamics, Bound. Value Probl., 2018 (2018), 17 pp. · Zbl 1499.35299
[17] J. Goddard II; R. Shivaji, Diffusive logistic equation with constant yield harvesting and negative density dependent emigration on the boundary, J. Math. Anal. Appl., 414, 561-573 (2014) · Zbl 1312.35112 · doi:10.1016/j.jmaa.2014.01.016
[18] J. Goddard II; R. Shivaji; E. K. Lee, Diffusive logistic equation with non-linear boundary conditions, J. Math. Anal. Appl., 375, 365-370 (2011) · Zbl 1208.35082 · doi:10.1016/j.jmaa.2010.09.057
[19] P. V. Gordon; E. Ko; R. Shivaji, Multiplicity and uniqueness of positive solutions for elliptic equations with nonlinear boundary conditions arising in a theory of thermal explosion, Nonlinear Anal., 15, 51-57 (2014) · Zbl 1302.35151 · doi:10.1016/j.nonrwa.2013.05.005
[20] F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions, Indiana Univ. Math. J., 31, 213-221 (1982) · Zbl 0533.35035 · doi:10.1512/iumj.1982.31.31019
[21] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20, 1-13 (1970/1971) · Zbl 0215.14602 · doi:10.1512/iumj.1970.20.20001
[22] A. Lê, Eigenvalue problems for the \(p\)-Laplacian, Nonlinear Anal., 64, 1057-1099 (2006) · Zbl 1208.35015 · doi:10.1016/j.na.2005.05.056
[23] E. Lee; S. Sasi; R. Shivaji, S-shaped bifurcation curves in ecosystems, J. Math. Anal. Appl., 381, 732-741 (2011) · Zbl 1221.35421 · doi:10.1016/j.jmaa.2011.03.048
[24] E. K. Lee; R. Shivaji; J. Ye, Positive solutions for elliptic equations involving nonlinearities with falling zeroes, Appl. Math. Lett., 22, 846-851 (2009) · Zbl 1170.35422 · doi:10.1016/j.aml.2008.08.020
[25] M. K. Mallick., Steady State Reaction Diffusion Equations with Falling Zero Reaction Terms and Nonlinear Boundary Conditions, PhD thesis, Chennai India, 2019.
[26] M. H. Protter and H. F. Weinberger., Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. · Zbl 0549.35002
[27] J. Serrin., A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43, 304-318 (1971) · Zbl 0222.31007 · doi:10.1007/BF00250468
[28] J. Shi; R. Shivaji, Persistence in reaction diffusion models with weak Allee effect, J. Math. Biol., 52, 807-829 (2006) · Zbl 1110.92055 · doi:10.1007/s00285-006-0373-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.