×

The \(L^2\)-torsion polytope of amenable groups. (English) Zbl 1483.20078

Summary: We introduce the notion of groups of polytope class and show that torsion-free amenable groups satisfying the Atiyah Conjecture possess this property. A direct consequence is the homotopy invariance of the \(L^2\)-torsion polytope among \(G\)-CW-complexes for these groups. As another application we prove that the \(L^2\)-torsion polytope of an amenable group vanishes provided that it contains a non-abelian elementary amenable normal subgroup.

MSC:

20F65 Geometric group theory
57Q10 Simple homotopy type, Whitehead torsion, Reidemeister-Franz torsion, etc.
16S85 Associative rings of fractions and localizations
43A07 Means on groups, semigroups, etc.; amenable groups

References:

[1] M. Abért, A. Jaikin-Zapirain, and N. Nikolov, The rank gradient from a combinatorial viewpoint, Groups Geom. Dyn. {5} (2011), 213-230. DOI 10.4171/GGD/124; zbl 1284.20047; MR2782170; arxiv math/0701925 · Zbl 1284.20047 · doi:10.4171/GGD/124
[2] M. Abért and N. Nikolov, {Rank gradient, cost of groups and the rank versus Heegaard genus problem}, J. European Math. Soc. {14} (2012), no. 5, 1657-1677. DOI 10.4171/JEMS/344; zbl 1271.57046; MR2966663; arxiv math/0701361 · Zbl 1271.57046 · doi:10.4171/JEMS/344
[3] R. Bieri, W. D. Neumann, and R. Strebel, {A geometric invariant of discrete groups}, Invent. Math. {90} (1987), no. 3, 451-477. DOI 10.1007/BF01389175; zbl 0642.57002; MR0914846 · Zbl 0642.57002 · doi:10.1007/BF01389175
[4] J. C. Cha, S. Friedl, and F. Funke, {The Grothendieck group of polytopes and norms}, M\"unster J. Math. {10} (2017), 75-81. DOI 10.17879/33249451813; zbl 1373.52013; MR3624102; arxiv 1512.06699 · Zbl 1373.52013 · doi:10.17879/33249451813
[5] J. Cheeger and M. Gromov, \(L_2\)-Cohomology and group cohomology · Zbl 0597.57020 · doi:10.1016/0040-9383(86)90039-X
[6] J. Dieudonn{\'e}, {Les d\'eterminants sur un corps non commutatif}, Bull. Soc. Math. France {71} (1943), 27-45. DOI 10.24033/bsmf.1345; zbl 0028.33904; MR0012273 · Zbl 0028.33904 · doi:10.24033/bsmf.1345
[7] J. Dubois, S. Friedl, and W. L{\"u}ck, {The \(L^2\)-Alexander torsion is symmetric}, Alg. Geom. Top. {15} (2015), no. 6, 3599-3612. DOI 10.2140/agt.2015.15.3599; zbl 1337.57035; MR3450772; arxiv 1411.2292 · Zbl 1337.57035 · doi:10.2140/agt.2015.15.3599
[8] J. Dubois, S. Friedl, and W. L{\"u}ck, {Three flavors of twisted invariants of knots}, Introduction to Modern Mathematics, Advanced Lectures in Mathematics {33} (2015), 143-170. zbl 1356.57014; MR3445449; arxiv 1410.6924 · Zbl 1356.57014
[9] J. Dubois, S. Friedl, and W. L{\"u}ck, {The \(L^2\)-Alexander torsion of 3-manifolds}, J. Topology {9} (2016), no. 3, 889-926. DOI 10.1112/jtopol/jtw013; zbl 1355.57009; MR3551842; arxiv 1410.6918 · Zbl 1355.57009 · doi:10.1112/jtopol/jtw013
[10] S. Friedl, {Reidemeister torsion, the Thurston norm and Harvey’s invariants}, Pac. J. Math. {230} (2007), 271-296. DOI 10.2140/pjm.2007.230.271; zbl 1163.57008; MR2309160; arxiv math/0508648 · Zbl 1163.57008 · doi:10.2140/pjm.2007.230.271
[11] S. Friedl and S. Harvey, {Non-commutative Multivariable Reidemeister Torsion and the Thurston Norm}, Alg. Geom. Top. {7} (2007), 755-777. MR2308963; arxiv math/0608409 · Zbl 1147.57014
[12] S. Friedl and W. L{\"u}ck, {\({L}^2\)-Euler characteristics and the Thurston norm} (2016). arxiv 1609.07805 · Zbl 1417.57012
[13] S. Friedl and W. L{\"u}ck, {Universal {\({L}^2\)}-torsion, polytopes and applications to 3-manifolds}, Proc. London Math. Soc. {114} (2017), 1114-1151. DOI 10.1112/plms.12035; zbl 1379.57029 · Zbl 1379.57029 · doi:10.1112/plms.12035
[14] S. Friedl, W. Lück, and S. Tillmann, Groups and polytopes (2016). arxiv 1609.07805
[15] S. Friedl, S. Tillmann, Two-generator one-relator groups and marked polytopes, (2015). arxiv 1501.03489 · Zbl 1528.20095
[16] F. Funke, The integral polytope group, (2016). arxiv 1605.01217
[17] F. Funke and D. Kielak, {Alexander and Thurston norms, and the Bieri-Neumann-Strebel invariants for free-by-cyclic groups}, Geom. Topol. {22} (2018), 2647-2696. DOI 10.2140/gt.2018.22.2647; zbl 06882287; MR3811767; arxiv 1605.09067 · Zbl 1486.20056 · doi:10.2140/gt.2018.22.2647
[18] D. Gaboriau, {Co{\^u}t des relations d’{\'e}quivalence et des groupes}, Invent. Math. {139} (2000), no. 1, 41-98. DOI 10.1007/s002229900019; zbl 0939.28012; MR1728876 · Zbl 0939.28012 · doi:10.1007/s002229900019
[19] R. I. Grigorchuk, {Degrees of growth of finitely generated groups, and the theory of invariant means}, Izv. Akad. Nauk SSSR Ser. Mat. {48} (1984), 939-985. English version in Mathematics of the USSR-Izvestiya {25} (1985), 259-300. DOI 10.1070/IM1985v025n02ABEH001281; zbl 0583.20023; MR0764305 · Zbl 0583.20023 · doi:10.1070/IM1985v025n02ABEH001281
[20] R. I. Grigorchuk, {An example of a finitely presented amenable group not belonging to the class \(EG\)}, Math. Sb. {189} (1998), 79-100. DOI 10.1070/SM1998v189n01ABEH000293; zbl 0931.43003; MR1616436 · Zbl 0931.43003 · doi:10.1070/SM1998v189n01ABEH000293
[21] M. Gromov, {Volume and bounded cohomology}, Inst. Hautes Etudes Sci. Publ. Math. {56} (1983), 5-99. zbl 0516.53046; MR0686042 · Zbl 0516.53046
[22] J.A. Hillman and P.A. Linnell, {Elementary amenable groups of finite Hirsch length are locally-finite by virtually solvable}, J. Austral. Math. Soc. (Series A) {52} (1992), 237-241. zbl 0772.20010; MR1143191 · Zbl 0772.20010
[23] P. H. Kropholler, P. A. Linnell, and J. A. Moody, {Applications of a new \(K\)-theoretic theorem to soluble group rings}, Proc. Amer. Math. Soc. {104} (1988), no. 3, 675-684. DOI 10.2307/2046771; zbl 0691.16013; MR0964842 · Zbl 0691.16013 · doi:10.2307/2046771
[24] H. Li and A. Thom, {Entropy, Determinants, and \(L^2\)-Torsion}, J. Amer. Math. Soc. {27} (2014), no. 1, 239-292. DOI 10.1090/S0894-0347-2013-00778-X; zbl 1283.37031; MR3110799; arxiv 1202.1213 · Zbl 1283.37031 · doi:10.1090/S0894-0347-2013-00778-X
[25] P. A. Linnell, {Noncommutative localization in group rings}, Non-commutative localization in algebra and topology, 2006, 40-59. zbl 1123.16016; MR2222481; arxiv math/0311071 · Zbl 1123.16016
[26] W. Lück, {\(L^2\)}-invariants: theory and applications to geometry and {\(K\)}-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. zbl 1009.55001; MR1926649 · Zbl 1009.55001
[27] W. Lück and H. Reich, {The Baum-Connes and the Farrell-Jones Conjectures in \(K\)- and \(L\)-theory}, Handbook of \(K\)-theory, Volume 2, Springer, Berlin, 2005, 703-842. zbl 1120.19001; MR2181833 · Zbl 1120.19001
[28] D. S. Ornstein and B. Weiss, {Ergodic theory of amenable group actions. I: The Rohlin lemma}, Bull. Amer. Math. Soc. {2} (1980), no. 1, 161-164. DOI 10.1090/S0273-0979-1980-14702-3; zbl 0427.28018; MR0551753 · Zbl 0427.28018 · doi:10.1090/S0273-0979-1980-14702-3
[29] J. Rosenberg, {Algebraic \(K\)-Theory and Its Applications}, Graduate Text in Mathematics, vol 147, Springer, New York, 1994. zbl 0801.19001; MR1282290 · Zbl 0801.19001
[30] S. Rosset, {A vanishing theorem for Euler characteristics}, Math. Z. {185} (1984), 211-215. DOI 10.1007/BF01181691; zbl 0549.57010; MR0731341 · Zbl 0549.57010 · doi:10.1007/BF01181691
[31] R. Schneider, {Convex bodies: the Brunn-Minkowski theory}, Cambridge Univ. Press, Cambridge, 1993. zbl 0798.52001; MR1216521 · Zbl 0798.52001
[32] R. J. Silvester, {Introduction to algebraic \(K\)-theory}, Chapman & Hall, London, 1981. zbl 0468.18006; MR0629979 · Zbl 0468.18006
[33] D. Tamari, {A refined classification of semi-groups leading to generalized polynomial rings with a generalized degree concept}, in Johan C. H. Gerretsen and Johannes de Groot, editors, {Proceedings of the International Congress of Mathematicians}, Amsterdam, 1954, volume 3, pp. 439-440, Groningen, 1957
[34] C. Wegner, {\(L^2\)-invariants of finite aspherical CW-complexes with fundamental group containing a non-trivial elementary amenable normal subgroup}, Ph.D. thesis, Münster, 2000 · Zbl 0964.55008
[35] C. Wegner, {\(L^2\)-invariants of finite aspherical CW-complexes}, Manuscripta Math. {128} (2009), no. 4, 469-481. DOI 10.1007/s00229-008-0246-z; zbl 1163.57016; MR2487437; arxiv 0805.4150 · Zbl 1163.57016 · doi:10.1007/s00229-008-0246-z
[36] C. Wegner, {The Farrell-Jones Conjecture for virtually solvable groups}, J. Topology {8} (2015), no. 4, 975-1016. DOI 10.1112/jtopol/jtv026; zbl 1338.19002; MR3431666; arxiv 1308.2432 · Zbl 1338.19002 · doi:10.1112/jtopol/jtv026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.