×

Gorenstein property for phylogenetic trivalent trees. (English) Zbl 1483.14088

The authors investigate phylogenetic tree models: rooted trees with matrices of transitions between finitely many states assigned to edges. They consider group-based models, i.e., ones with symmetries determined by a finite abelian group action. They establish several properties of such models by investigating geometric and combinatorial objects associated to a tree model: a toric variety and a lattice polytope.
The article under review starts with the proof that for a tripod tree and a group of symmetries of even cardinality the associated algebraic variety is not projectively normal. Then the authors investigate model for \(\mathbb{Z}_3\) and claw trees, and describe facets of associated polytopes. The next result concerns the Gorenstein property for polytopes associated to a trivalent tree and a small group of symmetries: for \(\mathbb{Z}_2\times\mathbb{Z}_2\) the polytope is Gorenstein of index 4 and for \(\mathbb{Z}_3\) it is Gorenstein of index 3. Finally, the authors prove the normality of associated polytopes for claw trees and \(\mathbb{Z}_3\).

MSC:

14M25 Toric varieties, Newton polyhedra, Okounkov bodies
13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)
92D15 Problems related to evolution
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
92B10 Taxonomy, cladistics, statistics in mathematical biology
05C05 Trees

Citations:

Zbl 1147.14027

Software:

polymake

References:

[1] Bruns, W.; Gubeladze, J., Polytopes, Rings and K-Theory, Springer Monogr. Math. (2009) · Zbl 1168.13001
[2] Buczyńska, W.; Wiśniewski, J., On geometry of binary symmetric models of phylogenetic trees, J. Eur. Math. Soc., 9, 3, 609-635 (2007) · Zbl 1147.14027
[3] Casanellas, M.; Fernańadez-Sánchez, J., Geometry of the Kimura 3-parameter model, Adv. Appl. Math., 41, 265-292 (2008) · Zbl 1222.14110
[4] Casanellas, M.; Fernańadez-Sánchez, J., Relevant phylogenetic invariants of evolutionary models, J. Math. Pures Appl., 96, 207-229 (2011) · Zbl 1230.14063
[5] Casanellas, M.; Fernańadez-Sánchez, J.; Michałek, M., Complete intersection for equivariant models (2015), arXiv preprint
[6] Cox, D.; Little, J.; Schenck, H., Toric Varieties (2011), Amer. Math. Soc. · Zbl 1223.14001
[7] Donten-Bury, M., Phylogenetic invariants for \(\mathbb{Z}_3\) scheme theoretically, Ann. Comb., 20, 3, 549-568 (2016) · Zbl 1355.13021
[8] Programs C++ for analyzing polytopes associated with phylogenetic models, Available at
[9] Donten-Bury, M.; Michałek, M., Phylogenetic invariants for group-based model, J. Algebraic Stat., 3, 1, 44-63 (2012) · Zbl 1353.52008
[10] Draisma, J.; Kuttler, J., On the ideals of equivariant tree models, Math. Ann., 344, 3, 619-644 (2009) · Zbl 1398.62338
[11] Eriksson, N.; Ranestad, K.; Sturmfels, B.; Sullivant, S., Phylogenetic algebraic geometry, (Projective Varieties with Unexpected Properties. Projective Varieties with Unexpected Properties, Siena, Italy (2004)), 237-256 · Zbl 1106.14050
[12] Evans, S.; Speed, T. P., Invariants of some probability models used in phylogenetic inference, Ann. Stat., 21, 1, 355-377 (1993) · Zbl 0772.92012
[13] Felsenstein, J., Inferring Phylogenies (2003), Sinauer Associates, Inc.: Sinauer Associates, Inc. Sunderland
[14] Gawrilow, E.; Joswig, M., Polymake: a framework for analyzing convex polytopes, (Polytopes-Combinatorics and Computation. Polytopes-Combinatorics and Computation, Oberwolfach, 1997. Polytopes-Combinatorics and Computation. Polytopes-Combinatorics and Computation, Oberwolfach, 1997, DMV Sem., vol. 29 (2000), Birkhäuser: Birkhäuser Basel), 43-73 · Zbl 0960.68182
[15] Herzog, J.; Hibi, T.; Ohsugi, H., Binomial Ideals, Grad. Texts in Math., vol. 279 (2018), Springer · Zbl 1403.13004
[16] Herzog, J.; Hibi, T., Monomial Ideals, Grad. Texts in Math., vol. 260 (2010), Springer
[17] Hoa, L. T.; Trung, N. V., Affine semigroups and Cohen-Macaulay rings generated by monomials, Trans. Am. Math. Soc., 298, 145-167 (1986) · Zbl 0631.13020
[18] Kimura, M., Estimation of evolutionary distances between homologous nucleotide sequences, Proc. Natl. Acad. Sci., 78, 1, 454-458 (1981) · Zbl 0511.92013
[19] Kubjas, K., Hilbert polynomial of the Kimura 3-parameter model, J. Algebraic Stat., 3, 1, 64-69 (2012) · Zbl 1345.52007
[20] Mauhar, M.; Rusinko, J.; Vernon, Z., H-representation of the Kimura-3 polytope for the m-claw tree, SIAM J. Discrete Math., 31, 2, 783-795 (2017) · Zbl 1366.52015
[21] Michałek, M., Constructive degree bounds for group-based models, J. Comb. Theory, Ser. A, 120, 7, 1672-1694 (2013) · Zbl 1316.14098
[22] Michałek, M., Geometry of phylogenetic group-based models, J. Algebra, 339-356 (2011) · Zbl 1251.14040
[23] Michałek, M., Toric varieties in phylogenetics, Diss. Math., 511, 3-86 (2015) · Zbl 1375.14175
[24] Michałek, M., Toric geometry of the 3-Kimura model for any tree, Adv. Geom., 14, 1, 11-30 (2014) · Zbl 1300.14051
[25] Michałek, M.; Ventura, E., Phylogenetic complexity of the Kimura 3-parameter model, Adv. Math., 343, 640-680 (2019) · Zbl 1412.14031
[26] Pachter, L.; Sturmfels, B., Algebraic Statistics for Computational Biology (2005), Cambridge Univ. Press · Zbl 1108.62118
[27] Sturmfels, B., Gröbner Bases and Convex Polytopes (1995), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI
[28] Sturmfels, B.; Sullivant, S., Toric ideals of phylogenetic invariants, J. Comput. Biol., 12, 204-228 (2005) · Zbl 1391.13058
[29] Sullivant, S., Toric fiber product, J. Algebra, 316, 2, 560-577 (2007) · Zbl 1129.13030
[30] Székely, L. A.; Steel, M. A.; Erdös, P. L., Fourier calculus on evolutionary trees, Adv. Appl. Math., 14, 2, 200-210 (1993) · Zbl 0794.05014
[31] Vodička, M., Normality of the Kimura 3-parameter model, arXiv preprint · Zbl 1467.14123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.