×

On the Touchard polynomials and multiplicative plane partitions. (English) Zbl 1483.11037

The multiplicative \(d\)-dimensional partition of the positive integer \(n\) is a \(d\)-dimensional array of positive integers \(n_{i_1i_2\dots i_d}\) satisfying \(n_{j_1 j_2\dots j_d}\ge n_{k_1 k_2\dots k_d}\) if \(j_1\le k_1, j_2\le k_2,\dots j_d\le k_d\), and such that ther product equals \(n\). The Touchard polynomial \(T_n(x)\) of \(n\)th degree is defined by the exponential generating function \[ e^{x(e^t-1)}=\sum_{n=0}^\infty\frac{T_n(x)}{n!}t^n, \quad T_0(x):=1. \] Clearly, for all \(n\ge 0\), \(T_n(1)=\mathcal{B}_n\), where \(\mathcal{B}_n\) denotes the \(n\)th Bell number.
In this paper, the author deals with the number \(\mu_d(n)\) of \(d\)-dimensional partitions of the product \(\prod_{i=1}^n p_i\), where \(p_i\) denotes the \(i\)-th smallest prime number. It is known that \(\mu_1(n)=\mathcal{B}_n\). The author uses a combinatorial argument and generating functions to show that, for any integer \(n>0\), \(\mu_2(n)=2^n T_n(1/2)\). In addition, he conjectures that \(\mu_3(n)\le 3^n T_n(1/3)\).

MSC:

11B73 Bell and Stirling numbers
05A18 Partitions of sets
05E10 Combinatorial aspects of representation theory
Full Text: DOI

References:

[1] G.E. Andrews, The Theory of Partitions Reading, Massachusetts: Addison-Wesley Publishing Company, 1976. · Zbl 0371.10001
[2] S. Balakrishnan, S. Govindarajan, and N.S. Prabhakar, On the asymptotics of higher-dimensional partitions, J.Phys. A, A45, (2012), 055001 arXiv:1105.6231. · Zbl 1235.82007
[3] E.T. Bell, Exponential polynomials, Ann. of Math. 35, (1934), 258-277. · Zbl 0009.21202 · doi:10.2307/1968431
[4] W. Fulton, Young tableaux: With applications to representation theory and geometry LMSStudent Texts 35 Cambridge University Press, Cambridge, 1997. · Zbl 0878.14034
[5] J.F. Hughes and J. Shallit, On the number of multiplicative partitions, Amer. Math. Monthly, 90, (1983), 468-471. · Zbl 0523.10007 · doi:10.2307/2975729
[6] D.E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math., 34, (1970), 709-724. · Zbl 0199.31901 · doi:10.2140/pjm.1970.34.709
[7] D.E. Knuth, The Art of Computer Programming, 3 Sorting and Searching, 2nd ed., Addison Wesley Longman, 1998. · Zbl 0302.68010
[8] Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges On Counting Solid Standard Young Tableaux, 2012, arXiv:1202.6229v1 [math.CO]. · Zbl 1302.05032
[9] R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999. · Zbl 0928.05001
[10] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992. · Zbl 0769.05001
[11] G.T. Williams, Numbers generated by the function \(e^{e^{x-1}}\), Amer. Math. Monthly, 52, (1945), 323-327. · Zbl 0060.08416 · doi:10.2307/2305292
[12] A. Yong, What is ... a Young tableau?, Notices Amer. Math. Soc., 54, (2007), 240-241. · Zbl 1142.05372
[13] Y. Zhao, Young tableaux and the representations of the symmetric group, Harvard College Math Review, 2, (2008), 33-45.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.