×

Robust repetitive control of semi-Markovian jump systems. (English) Zbl 1482.93165

Summary: This paper considers the periodic reference tracking problem for continuous-time semi-Markovian jump systems. An observer-based robust \(H_\infty\) modified repetitive controller with logarithmically quantised output measurements is proposed. By using a lifting technique, the semi-Markovian jump system and the modified repetitive controller structure are transformed into a stochastic two-dimensional (2D) model to differentiate the control and learning actions involved in the repetitive controller structure. For the transformed 2D model, first, sufficient conditions are derived for the closed-loop control system to be mean square asymptotically stable by utilising tools from stochastic systems theory and multiple Lyapunov functional technique. Subsequently, a robust modified repetitive controller is synthesised to ensure a prescribed \(H_\infty\) attenuation performance in the presence of a bounded exogenous disturbance input. A numerical example on a switched boost converter circuit is considered and simulation results are provided to evaluate the proposed control strategy.

MSC:

93B36 \(H^\infty\)-control
93E03 Stochastic systems in control theory (general)
93B53 Observers
Full Text: DOI

References:

[1] Cao, R.; Low, K. S., A repetitive model predictive control approach for precision tracking of a linear motion system, IEEE Transactions on Industrial Electronics, 56, 6, 1955-1962 (2009) · doi:10.1109/TIE.2008.2007034
[2] Dong, H.; Wang, Z.; Gao, H., Distributed \(####\) filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks, IEEE Transactions on Industrial Electronics, 60, 10, 4665-4672 (2013) · doi:10.1109/TIE.2012.2213553
[3] Fateh, M. M.; Tehrani, H. A.; Karbassi, S. M., Repetitive control of electrically driven robot manipulators, International Journal of Systems Science, 44, 4, 775-785 (2013) · Zbl 1276.93057 · doi:10.1080/00207721.2011.625478
[4] Fu, M.; Xie, L., The sector bound approach to quantized feedback control, IEEE Transactions on Automatic Control, 50, 11, 1698-1711 (2005) · Zbl 1365.81064 · doi:10.1109/TAC.2005.858689
[5] Hespanha, J. P.; Naghshtabrizi, P.; Xu, Y., A survey of recent results in networked control systems, Proceedings of the IEEE, 95, 1, 138-162 (2007) · doi:10.1109/JPROC.2006.887288
[6] Ho, D. W.; Lu, G., Robust stabilization for a class of discrete-time non-linear systems via output feedback: The unified LMI approach, International Journal of Control, 76, 2, 105-115 (2003) · Zbl 1026.93048 · doi:10.1080/0020717031000067367
[7] Huang, J.; Shi, Y., Stochastic stability and robust stabilization of semi-Markov jump linear systems, International Journal of Robust and Nonlinear Control, 23, 18, 2028-2043 (2013) · Zbl 1278.93286 · doi:10.1002/rnc.2862
[8] Li, F.; Du, C.; Yang, C.; Gui, W., Passivity-based asynchronous sliding mode control for delayed singular Markovian jump systems, IEEE Transactions on Automatic Control, 63, 8, 2715-2721 (2018) · Zbl 1423.93365 · doi:10.1109/TAC.2017.2776747
[9] Li, H.; Shi, P.; Yao, D.; Wu, L., Observer-based adaptive sliding mode control for nonlinear Markovian jump systems, Automatica, 64, 133-142 (2016) · Zbl 1329.93126 · doi:10.1016/j.automatica.2015.11.007
[10] Li, Y.; Sun, H.; Zong, G.; Hou, L., Composite adaptive anti-disturbance resilient control for Markovian jump systems with partly known transition rate and multiple disturbances, International Journal of Adaptive Control and Signal Processing, 31, 7, 1077-1097 (2017) · Zbl 1370.93244 · doi:10.1002/acs.2748
[11] Liu, X.; Ma, G.; Jiang, X.; Xi, H., \(H####\) stochastic synchronization for master-slave semi-Markovian switching system via sliding mode control, Complexity, 21, 6, 430-441 (2016) · doi:10.1002/cplx.21702
[12] Liu, X.; Ma, G.; Pagilla, P. R.; Ge, S. S., Dynamic output feedback asynchronous control of networked Markovian jump systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2018)
[13] Liu, X.; Yu, X.; Ma, G.; Xi, H., On sliding mode control for networked control systems with semi-Markovian switching and random sensor delays, Information Sciences, 337, 44-58 (2016) · Zbl 1396.93033 · doi:10.1016/j.ins.2015.12.023
[14] Liu, X.; Yu, X.; Xi, H., Finite-time synchronization of neutral complex networks with Markovian switching based on pinning controller, Neurocomputing, 153, 148-158 (2015) · doi:10.1016/j.neucom.2014.11.042
[15] Ma, G., Liu, X., & Pagilla, P. R. (2018). Repetitive control of discrete-time markov jump linear systems. In 2018 annual American control conference (ACC) (pp. 4546-4551).
[16] Mao, X.; Yuan, C., Stochastic differential equations with Markovian switching (2006), London: Imperial College Press, London · Zbl 1126.60002
[17] Pagilla, P. R.; Dwivedula, R. V.; Zhu, Y.; Perera, L. P., Periodic tension disturbance attenuation in web process lines using active dancers, ASME Transactions on Journal of Dynamic Systems, Measurement, and Control, 125, 3, 361-371 (2003) · doi:10.1115/1.1590678
[18] Rana, M.; Pota, H. R.; Petersen, I. R., Improvement in the imaging performance of atomic force microscopy: A survey, IEEE Transactions on Automation Science and Engineering, 14, 2, 1265-1285 (2017) · doi:10.1109/TASE.2016.2538319
[19] Rathinasamy, S.; Karimi, H. R.; Raajananthini, K.; Selvaraj, P.; Ren, Y., Observer-based tracking control for switched stochastic systems based on a hybrid 2-D model, International Journal of Robust and Nonlinear Control, 28, 2, 478-491 (2018) · Zbl 1390.93732 · doi:10.1002/rnc.3880
[20] Sakthivel, R.; Mohanapriya, S.; Karimi, H.; Selvaraj, P., A robust repetitive-control design for a class of uncertain stochastic dynamical systems, IEEE Transactions on Circuits and Systems II: Express Briefs, 64, 4, 427-431 (2017) · doi:10.1109/TCSII.2016.2572202
[21] Saravanakumar, R.; Ali, M. S.; Ahn, C. K.; Karimi, H. R.; Shi, P., Stability of Markovian jump generalized neural networks with interval time-varying delays, IEEE Transactions on Neural Networks and Learning Systems, 28, 8, 1840-1850 (2017) · doi:10.1109/TNNLS.2016.2552491
[22] Shao, Z.; Huang, S.; Xiang, Z., Robust \(H####\) repetitive control for a class of linear stochastic switched systems with time delay, Circuits, Systems, and Signal Processing, 34, 4, 1363-1377 (2015) · Zbl 1341.93028 · doi:10.1007/s00034-014-9905-3
[23] She, J.; Zhou, L.; Wu, M.; Zhang, J.; He, Y., Design of a modified repetitive-control system based on a continuous-discrete 2D model, Automatica, 48, 5, 844-850 (2012) · Zbl 1246.93049 · doi:10.1016/j.automatica.2012.02.019
[24] Shi, P.; Li, F.; Wu, L.; Lim, C. C., Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems, IEEE Transactions on Neural Networks and Learning Systems (2017)
[25] Swishchuk, A., Random Evolutions and their Applications: New Trends, 504 (2013), Dordrecht: Springer Science & Business Media, Dordrecht
[26] Teel, A. R.; Subbaraman, A.; Sferlazza, A., Stability analysis for stochastic hybrid systems: A survey, Automatica, 50, 10, 2435-2456 (2014) · Zbl 1301.93168 · doi:10.1016/j.automatica.2014.08.006
[27] Teo, Y. R.; Fleming, A. J.; Eielsen, A. A.; Gravdahl, J. T., A simplified method for discrete-time repetitive control using model-less finite impulse response filter inversion, ASME Transactions on Journal of Dynamic Systems, Measurement, and Control, 138, 8 (2016) · doi:10.1115/1.4033274
[28] Verrelli, C. M.; Pirozzi, S.; Tomei, P.; Natale, C., Linear repetitive learning controls for robotic manipulators by padé approximants, IEEE Transactions on Control Systems Technology, 23, 5, 2063-2070 (2015) · doi:10.1109/TCST.2015.2396012
[29] Wang, G.; Zhang, Q.; Yang, C., Robust stabilisation of uncertain delayed Markovian jump systems and its applications, International Journal of Systems Science, 48, 6, 1226-1241 (2017) · Zbl 1362.93129 · doi:10.1080/00207721.2016.1249037
[30] Wu, T.; Li, F.; Yang, C.; Gui, W., Event-based fault detection filtering for complex networked jump systems, IEEE/ASME Transactions on Mechatronics, 23, 2, 497-505 (2018) · doi:10.1109/TMECH.2017.2707389
[31] Wu, Z. G.; Shi, P.; Su, H.; Chu, J., Asynchronous \(####\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities, Automatica, 50, 1, 180-186 (2014) · Zbl 1417.93317 · doi:10.1016/j.automatica.2013.09.041
[32] Wu, M.; Xu, B.; Cao, W.; She, J., Aperiodic disturbance rejection in repetitive-control systems, IEEE Transactions on Control Systems Technology, 22, 3, 1044-1051 (2014) · doi:10.1109/TCST.2013.2272637
[33] Xiong, J.; Lam, J., Robust \(H####\) control of Markovian jump systems with uncertain switching probabilities, International Journal of Systems Science, 40, 3, 255-265 (2009) · Zbl 1167.93335 · doi:10.1080/00207720802300347
[34] Yamamoto, Y., A function space approach to sampled data control systems and tracking problems, IEEE Transactions on Automatic Control, 39, 4, 703-713 (1994) · Zbl 0807.93038 · doi:10.1109/9.286247
[35] Yang, H.; Xu, Y.; Zhang, J., Event-driven control for networked control systems with quantization and Markov packet losses, IEEE Transactions on Cybernetics, 47, 8, 2235-2243 (2017) · doi:10.1109/TCYB.2016.2568281
[36] Yao, D.; Liu, M.; Lu, R.; Xu, Y.; Zhou, Q., Adaptive sliding mode controller design of Markov jump systems with time-varying actuator faults and partly unknown transition probabilities, Nonlinear Analysis: Hybrid Systems, 28, 105-122 (2018) · Zbl 1380.93277
[37] Yao, D.; Lu, R.; Xu, Y.; Wang, L., Robust \(H####\) filtering for Markov jump systems with mode-dependent quantized output and partly unknown transition probabilities, Signal processing, 137, 328-338 (2017) · doi:10.1016/j.sigpro.2017.02.010
[38] Zhang, L.; Gao, H.; Kaynak, O., Network-induced constraints in networked control systems—A survey, IEEE Transactions on Industrial Informatics, 9, 1, 403-416 (2013) · doi:10.1109/TII.2012.2219540
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.