×

Dynamical equilibrium states of a class of irrotational non-orthogonally transitive \(G_2\) cosmologies. II: Models with one hypersurface-orthogonal Killing vector field. (English) Zbl 1482.83144

Summary: We consider a class of inhomogeneous self-similar cosmological models in which the perfect fluid flow is tangential to the orbits of a three-parameter similarity group. It is assumed throughout that the source is a perfect fluid with linear equation of state. We restrict the similarity group to possess both an Abelian \(G_2\), and a single hypersurface orthogonal Killing vector field, and we restrict the fluid flow to be orthogonal to the orbits of the Abelian \(G_2\). The temporal evolution of the models is forced to be power law, due to the similarity group, and the Einstein field equations reduce to a three-dimensional autonomous system of ordinary differential equations which is qualitatively analysed in order to determine the spatial structure of the models. The existence of two classes of well-behaved models is demonstrated. The first of these is asymptotically spatially homogeneous and matter dominated, and the second is vacuum dominated and either asymptotically spatially homogeneous or acceleration dominated, at large spatial distances.
For Part I, see [the second author, ibid. 38, No. 17, Article ID 175004, 23 p. (2021; Zbl 1482.83133)].

MSC:

83F05 Relativistic cosmology
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
11J20 Inhomogeneous linear forms
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
18M10 Traced monoidal categories, compact closed categories, star-autonomous categories
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory

Citations:

Zbl 1482.83133

References:

[1] Hewitt, C. G., Class. Quantum Grav. (2021)
[2] Ellis, G. F R.; MacCallum, M. A H., Commun. Math. Phys., 12, 108-141 (1969) · Zbl 0177.57601 · doi:10.1007/bf01645908
[3] Wainwright, J.; Ellis, G. F R., Dynamical Systems in Cosmology (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1072.83002
[4] Eardley, D. M., Phys. Rev. D, 19, 2239 (1974) · doi:10.1103/physrevd.19.2239
[5] den Bergh, N. V., Class. Quantum Grav., 5, 167 (1988) · Zbl 0635.53065 · doi:10.1088/0264-9381/5/1/021
[6] Wils, P., Class. Quantum Grav., 8, 361 (1991) · Zbl 0712.53047 · doi:10.1088/0264-9381/8/2/015
[7] Hsu, L.; Wainwright, J., Class. Quantum Grav., 3, 1105 (1986) · Zbl 0603.53048 · doi:10.1088/0264-9381/3/6/011
[8] den Bergh, N. V., Class. Quantum Grav., 9, 2297 (1992) · Zbl 0773.53034 · doi:10.1088/0264-9381/9/10/013
[9] Kramer, D.; Stephani, H.; MacCallum, M. A H.; Herlt, E., Exact Solutions of Einstein’s Field Equations (2009), (Cambridge: Cambridge University Press), (Cambridge · Zbl 0449.53018
[10] Hewitt, C. G.; Wainwright, J., Invariant classification of diagonal G2 cosmologies, General Relativity and Relativistic Astrophysics, p 266 (1994), Singapore: World Scientific, Singapore
[11] Senovilla, J. M M., Phys. Rev. Lett., 64, 2219 (1990) · Zbl 0942.83506 · doi:10.1103/physrevlett.64.2219
[12] Feinstein, A.; Senovilla, J. M M., Class. Quantum Grav., 6, L89 (1989) · Zbl 1248.83011 · doi:10.1088/0264-9381/6/6/001
[13] Davidson, W., J. Math. Phys., 32, 1560-1561 (1991) · Zbl 0733.53042 · doi:10.1063/1.529266
[14] den Bergh, N. V.; Skea, J., Class. Quantum Grav., 9, 527 (1992) · Zbl 0742.53025 · doi:10.1088/0264-9381/9/2/015
[15] Wainwright, J., J. Phys. A: Math. Gen., 14, 1131 (1981) · doi:10.1088/0305-4470/14/5/033
[16] Hewitt, C. G.; Wainwright, J.; Goode, S. W., Class. Quantum Grav., 5, 1313 (1988) · Zbl 0646.53064 · doi:10.1088/0264-9381/5/10/010
[17] Hewitt, C. G.; Wainwright, J.; Glaum, M., Class. Quantum Grav., 8, 1505 (1991) · Zbl 0742.53036 · doi:10.1088/0264-9381/8/8/015
[18] Rashidi, S., A subclass of exceptional parallel self-similar G_2 cosmologies, Master’s Thesis (2019)
[19] Sibirskiĭ, K. S., Introduction to Topological Dynamics (1975), Netherlands: Noordhoff International Pub, Netherlands · Zbl 0297.54001
[20] LeBlanc, V. G.; Kerr, D.; Wainwright, J., Class. Quantum Grav., 12, 513 (1995) · Zbl 0817.53049 · doi:10.1088/0264-9381/12/2/020
[21] Hewitt, C. G., Gen Relativ. Gravit., 23, 691-712 (1991) · Zbl 0726.58068 · doi:10.1007/bf00756774
[22] Hirsch, M. W.; Smale, S.; Devaney, R. L., Differential Equations, Dynamical Systems, and an Introduction to Chaos (2012), New York: Academic, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.