×

Quantum field theory on noncommutative spaces. (English) Zbl 1482.81038

Chamseddine, Ali (ed.) et al., Advances in noncommutative geometry. Based on the noncommutative geometry conference, Shanghai, China, March 23 – April 7, 2017. On the occasion of Alain Connes’ 70th Birthday. Cham: Springer. 607-690 (2019).
Summary: This survey tries to give a rigorous definition of Euclidean quantum field theory on a fairly large class of noncommutative geometries, namely nuclear AF Fréchet algebras. After a review of historical developments and current trends we describe in detail the construction of the \(\Phi^3\)-model and explain its relation to the Kontsevich model. We review the current status of the construction of the \(\Phi^4\)-model and present in an outlook a possible definition of Schwinger functions for which the Osterwalder-Schrader axioms can be formulated.
For the entire collection see [Zbl 1432.58003].

MSC:

81T75 Noncommutative geometry methods in quantum field theory
81T08 Constructive quantum field theory
81T10 Model quantum field theories
81T05 Axiomatic quantum field theory; operator algebras
81R60 Noncommutative geometry in quantum theory
46A04 Locally convex Fréchet spaces and (DF)-spaces

Software:

HyperInt; admcycles
Full Text: DOI

References:

[1] G. Alexanian, A. P. Balachandran, G. Immirzi, and B. Ydri. Fuzzy CP^2. J. Geom. Phys., 42:28-53, 2002, hep-th/0103023. doi: 10.1016/S0393-0440(01)00070-5. · Zbl 1046.54002 · doi:10.1016/S0393-0440(01)00070-5
[2] I. Ya. Aref’eva, D. M. Belov, and A. S. Koshelev. A note on UV / IR for noncommutative complex scalar field. 2000, hep-th/0001215.
[3] I. Ya. Aref’eva, D. M. Belov, and A. S. Koshelev. Two loop diagrams in noncommutative \(\phi^4_4\) theory. Phys. Lett., B476:431-436, 2000, hep-th/9912075. doi: 10.1016/S0370-2693(00)00169-6. · Zbl 1050.81606 · doi:10.1016/S0370-2693(00)00169-6
[4] E. Arbarello and M. Cornalba. Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves. J. Algebraic Geom., 5(4):705-749, 1996. · Zbl 0886.14007
[5] J. Ambjørn, B. Durhuus, and T. Jónsson. Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett., A6:1133-1146, 1991. doi: 10.1142/S0217732391001184. · Zbl 1020.83537 · doi:10.1142/S0217732391001184
[6] L. Alvarez-Gaume, J. L. F. Barbon, and R. Zwicky. Remarks on time space noncommutative field theories. JHEP, 05:057, 2001, hep-th/0103069. doi: 10.1088/1126-6708/2001/05/057. · doi:10.1088/1126-6708/2001/05/057
[7] H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa, and T. Tada. Noncommutative Yang-Mills in IIB matrix model. Nucl. Phys., B565:176-192, 2000, hep-th/9908141. doi: 10.1016/S0550-3213(99)00633-1. · Zbl 0956.81089 · doi:10.1016/S0550-3213(99)00633-1
[8] M. Aizenman. Proof of the triviality of \(\phi^4_d\) field theory and some mean field features of Ising models for d > 4. Phys. Rev. Lett., 47:1-4, 1981. doi: 10.1103/PhysRevLett.47.1. · doi:10.1103/PhysRevLett.47.1
[9] S. Ø. Aks. Proof that scattering implies production in quantum field theory. J. Math. Phys., 6:516-532, 1965. doi: 10.1063/1.1704305. · doi:10.1063/1.1704305
[10] A. Alexandrov. Cut-and-join operator representation for Kontsevich-Witten tau-function. Mod. Phys. Lett., A26:2193-2199, 2011, 1009.4887. doi: 10.1142/S0217732311036607. · Zbl 1274.81182 · doi:10.1142/S0217732311036607
[11] J. Ambjørn, Y. M. Makeenko, J. Nishimura, and R. J. Szabo. Finite N matrix models of noncommutative gauge theory. JHEP, 11:029, 1999, hep-th/9911041. doi: 10.1088/1126-6708/1999/11/029. · Zbl 0957.81088 · doi:10.1088/1126-6708/1999/11/029
[12] A. Abdesselam and V. Rivasseau. Trees, forests and jungles: A botanical garden for cluster expansions. In Constructive physics: Results in field theory, statistical mechanics and condensed matter physics, volume 446 of Lect. Notes Phys., pages 7-36. 1995, hep-th/9409094. doi: 10.1007/3-540-59190-7_20. · Zbl 0822.60095 · doi:10.1007/3-540-59190-7_20
[13] A. Yu. Alekseev, A. Recknagel, and V. Schomerus. Noncommutative world volume geometries: Branes on SU(2) and fuzzy spheres. JHEP, 09:023, 1999, hep-th/9908040. doi: 10.1088/1126-6708/1999/09/023. · Zbl 0957.81084 · doi:10.1088/1126-6708/1999/09/023
[14] M. Atiyah. Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math., 68:175-186, 1988. URL http://www.numdam.org/item?id=PMIHES_1988__68__175_0. · Zbl 0692.53053
[15] D. Bahns. Unitary quantum field theory on the noncommutative Minkowski space. Fortsch. Phys., 51:658-663, 2003, hep-th/0212266. doi: 10.1002/prop.200310079. · Zbl 1026.81061 · doi:10.1002/prop.200310079
[16] D. Bahns. Schwinger functions in noncommutative quantum field theory. Annales Henri Poincaré, 11:1273-1283, 2010, 0908.4537. doi: 10.1007/s00023-010-0061-4. · Zbl 1208.81188 · doi:10.1007/s00023-010-0061-4
[17] W. Behr, N. G. Deshpande, G. Duplancić, P. Schupp, J. Trampetić, and J. Wess. The Z → γγ, gg decays in the noncommutative standard model. Eur. Phys. J., C29:441-446, 2003, hep-ph/0202121. doi: 10.1140/epjc/s2003-01207-4. · doi:10.1140/epjc/s2003-01207-4
[18] D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacitelli. On the unitarity problem in space-time noncommutative theories. Phys. Lett., B533:178-181, 2002, hep-th/0201222. doi: 10.1016/S0370-2693(02)01563-0. · Zbl 0994.81117 · doi:10.1016/S0370-2693(02)01563-0
[19] D. Bahns, S. Doplicher, K. Fredenhagen, and G. Piacitelli. Ultraviolet finite quantum field theory on quantum space-time. Commun. Math. Phys., 237:221-241, 2003, hep-th/0301100. doi: 10.1007/s00220-003-0857-x. · Zbl 1046.81093 · doi:10.1007/s00220-003-0857-x
[20] S. Bernstein. Sur les fonctions absolument monotones. Acta Math., 52(1):1-66, 1929. doi: 10.1007/BF02547400. · JFM 55.0142.07 · doi:10.1007/BF02547400
[21] H. A. Bethe. The electromagnetic shift of energy levels. Phys. Rev., 72:339-341, 1947. doi: 10.1103/PhysRev.72.339. · Zbl 0030.42406 · doi:10.1103/PhysRev.72.339
[22] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer. Deformation theory and quantization. 1. Deformations of symplectic structures. Annals Phys., 111:61, 1978. doi: 10.1016/0003-4916(78)90224-5. · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[23] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer. Deformation theory and quantization. 2. Physical applications. Annals Phys., 111:111, 1978. doi: 10.1016/0003-4916(78)90225-7. · Zbl 0377.53025 · doi:10.1016/0003-4916(78)90225-7
[24] H. Bozkaya, P. Fischer, H. Grosse, M. Pitschmann, V. Putz, M. Schweda, and R. Wulkenhaar. Space-time noncommutative field theories and causality. Eur. Phys. J., C29:133-141, 2003, hep-th/0209253. doi: 10.1140/epjc/s2003-01210-9. · Zbl 1030.81021 · doi:10.1140/epjc/s2003-01210-9
[25] R. Brunetti, K. Fredenhagen, and R. Verch. The generally covariant locality principle: A new paradigm for local quantum field theory. Commun. Math. Phys., 237:31-68, 2003, math-ph/0112041. doi: 10.1007/s00220-003-0815-7. · Zbl 1047.81052 · doi:10.1007/s00220-003-0815-7
[26] J. Ben Geloun. Renormalizable models in rank d ≥ 2 tensorial group field theory. Commun. Math. Phys., 332:117-188, 2014, 1306.1201. doi: 10.1007/s00220-014-2142-6. · Zbl 1300.83043 · doi:10.1007/s00220-014-2142-6
[27] A. Bichl, J. Grimstrup, H. Grosse, L. Popp, M. Schweda, and R. Wulkenhaar. Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map. JHEP, 06:013, 2001, hep-th/0104097. doi: 10.1088/1126-6708/2001/06/013. · Zbl 1099.81520 · doi:10.1088/1126-6708/2001/06/013
[28] D. N. Blaschke, F. Gieres, E. Kronberger, M. Schweda, and M. Wohlgenannt. Translation-invariant models for non-commutative gauge fields. J. Phys., A41:252002, 2008, 0804.1914. doi: 10.1088/1751-8113/41/25/252002. · Zbl 1192.81326 · doi:10.1088/1751-8113/41/25/252002
[29] A. A. Bichl, J. M. Grimstrup, L. Popp, M. Schweda, and R. Wulkenhaar. Perturbative analysis of the Seiberg-Witten map. Int. J. Mod. Phys., A17:2219-2232, 2002, hep-th/0102044. doi: 10.1142/S0217751X02010649. · Zbl 1058.81056 · doi:10.1142/S0217751X02010649
[30] J. Ben Geloun and V. Rivasseau. A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys., 318:69-109, 2013, 1111.4997. doi: 10.1007/s00220-012-1549-1. · Zbl 1261.83016 · doi:10.1007/s00220-012-1549-1
[31] V. Bonzom, R. Gurau, A. Riello, and V. Rivasseau. Critical behavior of colored tensor models in the large N limit. Nucl. Phys., B853:174-195, 2011, 1105.3122. doi: 10.1016/j.nuclphysb.2011.07.022. · Zbl 1229.81222 · doi:10.1016/j.nuclphysb.2011.07.022
[32] W. Bietenholz, F. Hofheinz, and J. Nishimura. The renormalizability of 2-D Yang-Mills theory on a noncommutative geometry. JHEP, 09:009, 2002, hep-th/0203151. doi: 10.1088/1126-6708/2002/09/009. · doi:10.1088/1126-6708/2002/09/009
[33] W. Bietenholz, F. Hofheinz, and J. Nishimura. Noncommutative field theories beyond perturbation theory. Fortsch. Phys., 51:745-752, 2003, hep-th/0212258. doi: 10.1002/prop.200310092. · Zbl 1035.81065 · doi:10.1002/prop.200310092
[34] E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber. Planar diagrams. Commun. Math. Phys., 59:35-51, 1978. doi: 10.1007/BF01614153. · Zbl 0997.81548 · doi:10.1007/BF01614153
[35] D. C. Brydges and T. Kennedy. Mayer expansions and the Hamilton-Jacobi equation. J. Statist. Phys., 48(1-2):19-49, 1987. doi: 10.1007/BF01010398. · doi:10.1007/BF01010398
[36] E. Brezin and V. A. Kazakov. Exactly Solvable Field Theories of Closed Strings. Phys. Lett., B236:144-150, 1990. doi: 10.1016/0370-2693(90)90818-Q. · doi:10.1016/0370-2693(90)90818-Q
[37] V. Bouchard, A. Klemm, M. Mariño, and S. Pasquetti. Remodeling the B-model. Commun. Math. Phys., 287:117-178, 2009, 0709.1453. doi: 10.1007/s00220-008-0620-4. · Zbl 1178.81214 · doi:10.1007/s00220-008-0620-4
[38] D. N. Blaschke, E. Kronberger, A. Rofner, M. Schweda, R. I. P. Sedmik, and M. Wohlgenannt. On the problem of renormalizability in non-commutative gauge field models: A critical review. Fortsch. Phys., 58:364-372, 2010, 0908.0467. doi: 10.1002/prop.200900102. · Zbl 1191.81200 · doi:10.1002/prop.200900102
[39] S. Bloch. Feynman amplitudes in mathematics and physics. 2015, arXiv:1509.00361.
[40] D. Buchholz, G. Lechner, and S. J. Summers. Warped convolutions, Rieffel deformations and the construction of quantum field theories. Commun. Math. Phys., 304:95-123, 2011, 1005.2656. doi: 10.1007/s00220-010-1137-1. · Zbl 1227.46043 · doi:10.1007/s00220-010-1137-1
[41] G. Benfatto and V. Mastropietro. Ward identities and vanishing of the beta function for d = 1 interacting Fermi systems. J. Statist. Phys., 115(1-2):143-184, 2004. doi: 10.1023/B:JOSS.0000019825.37968.23. · Zbl 1157.82328 · doi:10.1023/B:JOSS.0000019825.37968.23
[42] S. Bochner. Vorlesungen über Fouriersche Integrale, volume 12 of Mathematik und ihre Anwendungen in Monographien und Lehrbüchern. Akademische Verlagsgesellschaft m.b.h., 1932. · Zbl 0006.11001
[43] S. Bochner. Harmonic analysis and the theory of probability. University of California Press, Berkeley and Los Angeles, 1955. · Zbl 0068.11702
[44] N. N. Bogoliubow and O. S. Parasiuk. Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder. Acta Math., 97:227-266, 1957. doi: 10.1007/BF02392399. · Zbl 0081.43302 · doi:10.1007/BF02392399
[45] O. Bratteli. Inductive limits of finite dimensional C^∗-algebras. Trans. Amer. Math. Soc., 171:195-234, 1972. doi: 10.2307/1996380. · Zbl 0264.46057 · doi:10.2307/1996380
[46] D. Broadhurst. Multiple zeta values and modular forms in quantum field theory. In Computer algebra in quantum field theory, Texts Monogr. Symbol. Comput., pages 33-73. Springer, Vienna, 2013. · Zbl 1308.81129
[47] F. Brown. Iterated integrals in quantum field theory. In Geometric and topological methods for quantum field theory, pages 188-240. Cambridge Univ. Press, Cambridge, 2013. URL http://www.ihes.fr/ brown/ColombiaNotes7.pdf. · Zbl 1295.81072
[48] L. Bonora and M. Salizzoni. Renormalization of noncommutative U(N) gauge theories. Phys. Lett., B504:80-88, 2001, hep-th/0011088. doi: 10.1016/S0370-2693(01)00281-7. · Zbl 0977.81092 · doi:10.1016/S0370-2693(01)00281-7
[49] D. Buchholz and S. J. Summers. Warped convolutions: A novel tool in the construction of quantum field theories. In Quantum field theory and beyond: Essays in honor of Wolfhart Zimmermann, pages 107-121, 2008, 0806.0349. doi: 10.1142/9789812833556_0007. · Zbl 1206.81072 · doi:10.1142/9789812833556_0007
[50] H. Bürmann. Essai de calcul fonctionnaire aux constantes ad-libitum. Mem. Inst. Nat. Sci Arts. Sci. Math. Phys., 2:13-17, 1799.
[51] T. Carleman. Sur la résolution de certaines équations intégrales. Arkiv for Mat., Astron. och Fysik, 16:19pp, 1922. · JFM 48.0456.01
[52] A. H. Chamseddine and A. Connes. The Spectral action principle. Commun. Math. Phys., 186:731-750, 1997, hep-th/9606001. doi: 10.1007/s002200050126. · Zbl 0894.58007 · doi:10.1007/s002200050126
[53] A. H. Chamseddine, A. Connes, and V. Mukhanov. Geometry and the Quantum: Basics. JHEP, 12:098, 2014, 1411.0977. doi: 10.1007/JHEP12(2014)098. · Zbl 1333.81414 · doi:10.1007/JHEP12(2014)098
[54] A. H. Chamseddine, A. Connes, and V. Mukhanov. Quanta of Geometry: Noncommutative Aspects. Phys. Rev. Lett., 114(9):091302, 2015, 1409.2471. doi: 10.1103/PhysRevLett.114.091302. · doi:10.1103/PhysRevLett.114.091302
[55] A. Connes, M. R. Douglas, and A. S. Schwarz. Noncommutative geometry and matrix theory: Compactification on tori. JHEP, 02:003, 1998, hep-th/9711162. doi: 10.1088/1126-6708/1998/02/003. · Zbl 1018.81052 · doi:10.1088/1126-6708/1998/02/003
[56] L. Chekhov, B. Eynard, and N. Orantin. Free energy topological expansion for the 2-matrix model. JHEP, 12:053, 2006, math-ph/0603003. doi: 10.1088/1126-6708/2006/12/053. · Zbl 1226.81250 · doi:10.1088/1126-6708/2006/12/053
[57] A. S. Cattaneo and G. Felder. A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys., 212:591-611, 2000, math/9902090. doi: 10.1007/s002200000229. · Zbl 1038.53088 · doi:10.1007/s002200000229
[58] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W function. Adv. Comput. Math., 5:329-359, 1996. doi: 10.1007/BF02124750. · Zbl 0863.65008 · doi:10.1007/BF02124750
[59] S. Cho, R. Hinterding, J. Madore, and H. Steinacker. Finite field theory on noncommutative geometries. Int. J. Mod. Phys., D9:161-199, 2000, hep-th/9903239. doi: 10.1142/S0218271800000153. · Zbl 0961.81121 · doi:10.1142/S0218271800000153
[60] X. Calmet, B. Jurčo, P. Schupp, J. Wess, and M. Wohlgenannt. The standard model on noncommutative space-time. Eur. Phys. J., C23:363-376, 2002, hep-ph/0111115. doi: 10.1007/s100520100873. · Zbl 1099.81575 · doi:10.1007/s100520100873
[61] A. Connes and D. Kreimer. Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys., 199:203-242, 1998, hep-th/9808042. doi: 10.1007/s002200050499. · Zbl 0932.16038 · doi:10.1007/s002200050499
[62] A. Connes and H. Moscovici. Hopf algebras, cyclic cohomology and the transverse index theorem. Comm. Math. Phys., 198(1):199-246, 1998, math/9806109. doi: 10.1007/s002200050477. · Zbl 0940.58005 · doi:10.1007/s002200050477
[63] C.-S. Chu, J. Madore, and H. Steinacker. Scaling limits of the fuzzy sphere at one loop. JHEP, 08:038, 2001, hep-th/0106205. doi: 10.1088/1126-6708/2001/08/038. · doi:10.1088/1126-6708/2001/08/038
[64] A. Connes. Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994. · Zbl 0818.46076
[65] A. Connes. Noncommutative geometry and reality. J. Math. Phys., 36:6194-6231, 1995. doi: 10.1063/1.531241. · Zbl 0871.58008 · doi:10.1063/1.531241
[66] A. Connes. Gravity coupled with matter and foundation of noncommutative geometry. Commun. Math. Phys., 182:155-176, 1996, hep-th/9603053. doi: 10.1007/BF02506388. · Zbl 0881.58009 · doi:10.1007/BF02506388
[67] A. Connes and M. A. Rieffel. Yang-Mills for noncommutative two-tori. In Operator algebras and mathematical physics (Iowa City, Iowa, 1985), volume 62 of Contemp. Math., pages 237-266. Amer. Math. Soc., Providence, RI, 1987. doi: 10.1090/conm/062/878383. · Zbl 0633.46069 · doi:10.1090/conm/062/878383
[68] I. Chepelev and R. Roiban. Renormalization of quantum field theories on noncommutative \(\mathbb{R}^d. 1\). Scalars. JHEP, 05:037, 2000, hep-th/9911098. doi: 10.1088/1126-6708/2000/05/037. · Zbl 0990.81756 · doi:10.1088/1126-6708/2000/05/037
[69] I. Chepelev and R. Roiban. Convergence theorem for noncommutative Feynman graphs and renormalization. JHEP, 03:001, 2001, hep-th/0008090. doi: 10.1088/1126-6708/2001/03/001. · Zbl 0990.81756 · doi:10.1088/1126-6708/2001/03/001
[70] P. Di Francesco, P. H. Ginsparg, and J. Zinn-Justin. 2-D gravity and random matrices. Phys. Rept., 254:1-133, 1995, hep-th/9306153. doi: 10.1016/0370-1573(94)00084-G. · doi:10.1016/0370-1573(94)00084-G
[71] P. Di Francesco, C. Itzykson, and J. B. Zuber. Polynomial averages in the Kontsevich model. Commun. Math. Phys., 151:193-219, 1993, hep-th/9206090. doi: 10.1007/BF02096753. · Zbl 0831.14010 · doi:10.1007/BF02096753
[72] S. Doplicher, K. Fredenhagen, and J. E. Roberts. The quantum structure of space-time at the Planck scale and quantum fields. Commun. Math. Phys., 172:187-220, 1995, hep-th/0303037. doi: 10.1007/BF02104515. · Zbl 0847.53051 · doi:10.1007/BF02104515
[73] M. Disertori, R. Gurau, J. Magnen, and V. Rivasseau. Vanishing of beta function of non-commutative \(\phi^4_4\) theory to all orders. Phys. Lett., B649:95-102, 2007, hep-th/0612251. doi: 10.1016/j.physletb.2007.04.007. · Zbl 1248.81253 · doi:10.1016/j.physletb.2007.04.007
[74] A. de Goursac, J.-C. Wallet, and R. Wulkenhaar. Noncommutative induced gauge theory. Eur. Phys. J., C51:977-987, 2007, hep-th/0703075. doi: 10.1140/epjc/s10052-007-0335-2. · Zbl 1189.81215 · doi:10.1140/epjc/s10052-007-0335-2
[75] M. R. Douglas and C. M. Hull. D-branes and the noncommutative torus. JHEP, 02:008, 1998, hep-th/9711165. doi: 10.1088/1126-6708/1998/02/008. · Zbl 0957.81017 · doi:10.1088/1126-6708/1998/02/008
[76] J. de Jong, A. Hock, and R. Wulkenhaar. work in progress. 2019.
[77] M. R. Douglas and N. A. Nekrasov. Noncommutative field theory. Rev. Mod. Phys., 73:977-1029, 2001, hep-th/0106048. doi: 10.1103/RevModPhys.73.977. · Zbl 1205.81126 · doi:10.1103/RevModPhys.73.977
[78] D. D’Ascanio, P. Pisani, and D. V. Vassilevich. Renormalization on noncommutative torus. Eur. Phys. J., C76(4):180, 2016, 1602.01479. doi: 10.1140/epjc/s10052-016-4022-z. · doi:10.1140/epjc/s10052-016-4022-z
[79] M. Disertori and V. Rivasseau. Two- and three-loops beta function of non-commutative \(\phi^4_4\) theory. Eur. Phys. J., C50:661-671, 2007, hep-th/0610224. doi: 10.1140/epjc/s10052-007-0211-0. · Zbl 1248.81254 · doi:10.1140/epjc/s10052-007-0211-0
[80] M. R. Douglas and S. H. Shenker. Strings in less than one dimension. Nucl. Phys., B335:635-654, 1990. doi: 10.1016/0550-3213(90)90522-F. · doi:10.1016/0550-3213(90)90522-F
[81] S. Denk and M. Schweda. Time ordered perturbation theory for nonlocal interactions: Applications to NCQFT. JHEP, 09:032, 2003, hep-th/0306101. doi: 10.1088/1126-6708/2003/09/032. · doi:10.1088/1126-6708/2003/09/032
[82] V. Delecroix, J. Schmitt, and J. van Zelm. admcycles – a Sage program for calculations in the tautological ring of \(\overline{\mathcal{M}}_{g,n}\) and computation of cycles of admissible covers, 2018. URL https://people.math.ethz.ch/ schmittj/admcycles.html.
[83] D. Essouabri, B. Iochum, C. Levy, and A. Sitarz. Spectral action on noncommutative torus. J. Noncommut. Geom., 2(1):53-123, 2008, 0704.0564. doi: 10.4171/JNCG/16. · Zbl 1156.46046 · doi:10.4171/JNCG/16
[84] T. Eguchi and H. Kawai. Reduction of dynamical degrees of freedom in the large N gauge theory. Phys. Rev. Lett., 48:1063, 1982. doi: 10.1103/PhysRevLett.48.1063. · doi:10.1103/PhysRevLett.48.1063
[85] G. A. Elliott. On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. J. Algebra, 38(1):29-44, 1976. doi: 10.1016/0021-8693(76)90242-8. · Zbl 0323.46063 · doi:10.1016/0021-8693(76)90242-8
[86] B. Eynard and N. Orantin. Invariants of algebraic curves and topological expansion. Commun. Num. Theor. Phys., 1:347-452, 2007, math-ph/0702045. doi: 10.4310/CNTP.2007.v1.n2.a4. · Zbl 1161.14026 · doi:10.4310/CNTP.2007.v1.n2.a4
[87] B. Eynard. Topological expansion for the 1-Hermitian matrix model correlation functions. JHEP, 11:031, 2004, hep-th/0407261. doi: 10.1088/1126-6708/2004/11/031. · doi:10.1088/1126-6708/2004/11/031
[88] B. Eynard. Invariants of spectral curves and intersection theory of moduli spaces of complex curves. Commun. Num. Theor. Phys., 8:541-588, 2014, 1110.2949. doi: 10.4310/CNTP.2014.v8.n3.a4. · Zbl 1310.14037 · doi:10.4310/CNTP.2014.v8.n3.a4
[89] B. Eynard. Counting surfaces, volume 70 of Progress in Mathematical Physics. Birkhäuser/Springer, 2016. doi: 10.1007/978-3-7643-8797-6. CRM Aisenstadt chair lectures. · Zbl 1338.81005 · doi:10.1007/978-3-7643-8797-6
[90] B. Eynard. Large genus behavior of topological recursion. 2019, http://arxiv.org/abs/1905.11270.
[91] R. P. Feynman. Space-time approach to quantum electrodynamics. Phys. Rev., 76:769-789, 1949. doi: 10.1103/PhysRev.76.769. · Zbl 0038.13302 · doi:10.1103/PhysRev.76.769
[92] T. Filk. Divergencies in a field theory on quantum space. Phys. Lett., B376:53-58, 1996. doi: 10.1016/0370-2693(96)00024-X. · Zbl 1190.81096 · doi:10.1016/0370-2693(96)00024-X
[93] L. D. Faddeev and V. N. Popov. Feynman diagrams for the Yang-Mills field. Phys. Lett., B25:29-30, 1967. doi: 10.1016/0370-2693(67)90067-6. · doi:10.1016/0370-2693(67)90067-6
[94] J. Fröhlich. On the triviality of \(\lambda \phi^4_d\) theories and the approach to the critical point in d ≥ 4 dimensions. Nucl. Phys., B200:281-296, 1982. doi: 10.1016/0550-3213(82)90088-8. · doi:10.1016/0550-3213(82)90088-8
[95] A. Fischer and R. J. Szabo. Duality covariant quantum field theory on noncommutative Minkowski space. JHEP, 02:031, 2009, 0810.1195. doi: 10.1088/1126-6708/2009/02/031. · Zbl 1245.83061 · doi:10.1088/1126-6708/2009/02/031
[96] A. Gonzalez-Arroyo and M. Okawa. The twisted Eguchi-Kawai model: A reduced model for large N lattice gauge theory. Phys. Rev., D27:2397, 1983. doi: 10.1103/PhysRevD.27.2397. · Zbl 1290.81119 · doi:10.1103/PhysRevD.27.2397
[97] M. R. Garousi. Noncommutative world volume interactions on D-branes and Dirac-Born-Infeld action. Nucl. Phys., B579:209-228, 2000, hep-th/9909214. doi: 10.1016/S0550-3213(99)00826-3. · Zbl 1071.81579 · doi:10.1016/S0550-3213(99)00826-3
[98] V. Gayral. The action functional for Moyal planes. Lett. Math. Phys., 65:147-157, 2003, hep-th/0307220. doi: 10.1023/B:MATH.0000004380.57824.94. · Zbl 1043.46051 · doi:10.1023/B:MATH.0000004380.57824.94
[99] J. M. Gracia-Bondía and J. C. Várilly. Algebras of distributions suitable for phase space quantum mechanics. 1. J. Math. Phys., 29:869-879, 1988. doi: 10.1063/1.528200. · Zbl 0652.46026 · doi:10.1063/1.528200
[100] V. Gayral, J. M. Gracia-Bondía, B. Iochum, T. Schücker, and J. C. Várilly. Moyal planes are spectral triples. Commun. Math. Phys., 246:569-623, 2004, hep-th/0307241. doi: 10.1007/s00220-004-1057-z. · Zbl 1084.58008 · doi:10.1007/s00220-004-1057-z
[101] H. Grosse, A. Hock, and R. Wulkenhaar. A Laplacian to compute intersection numbers on \(\overline{\mathcal{M}}_{g,n}\) and correlation functions in NCQFT. 2019, 1903.12526.
[102] H. Grosse, A. Hock, and R. Wulkenhaar. Solution of all quartic matrix models. 2019, http://arxiv.org/abs/1906.04600.
[103] H. Grosse, A. Hock, and R. Wulkenhaar. Solution of the self-dual Φ^4 QFT-model on four-dimensional Moyal space. 2019, http://arxiv.org/abs/1908.04543. · Zbl 1434.81046
[104] V. Gayral and B. Iochum. The spectral action for Moyal planes. J. Math. Phys., 46:043503, 2005, hep-th/0402147. doi: 10.1063/1.1855401. · Zbl 1067.58020 · doi:10.1063/1.1855401
[105] J. Glimm and A. Jaffe. Quantum physics. A functional integral point of view. Springer-Verlag, New York, second edition, 1987. doi: 10.1007/978-1-4612-4728-9. · Zbl 0461.46051 · doi:10.1007/978-1-4612-4728-9
[106] V. Gayral, J.-H. Jureit, T. Krajewski, and R. Wulkenhaar. Quantum field theory on projective modules. J. Noncommut. Geom., 1(4):431-496, 2007, hep-th/0612048. doi: 10.4171/JNCG/13. · Zbl 1214.81282 · doi:10.4171/JNCG/13
[107] J. Glimm, A. Jaffe, and T. Spencer. The Wightman axioms and particle structure in the \(\mathcal{P}(\phi )_2\) quantum field model. Ann. of Math. (2), 100:585-632, 1974. doi: 10.2307/1970959. · doi:10.2307/1970959
[108] H. Grosse, C. Klimčík, and P. Prešnajder. On finite 4-D quantum field theory in noncommutative geometry. Commun. Math. Phys., 180:429-438, 1996, hep-th/9602115. doi: 10.1007/BF02099720. · Zbl 0872.58008 · doi:10.1007/BF02099720
[109] H. Grosse, C. Klimčík, and P. Prešnajder. Towards finite quantum field theory in noncommutative geometry. Int. J. Theor. Phys., 35:231-244, 1996, hep-th/9505175. doi: 10.1007/BF02083810. · Zbl 0846.58015 · doi:10.1007/BF02083810
[110] H. Grosse and G. Lechner. Wedge-local quantum fields and noncommutative Minkowski space. JHEP, 11:012, 2007, 0706.3992. doi: 10.1088/1126-6708/2007/11/012. · Zbl 1245.81048 · doi:10.1088/1126-6708/2007/11/012
[111] H. Grosse and G. Lechner. Noncommutative deformations of Wightman quantum field theories. JHEP, 09:131, 2008, 0808.3459. doi: 10.1088/1126-6708/2008/09/131. · Zbl 1245.81069 · doi:10.1088/1126-6708/2008/09/131
[112] H. Grosse, G. Lechner, T. Ludwig, and R. Verch. Wick rotation for quantum field theories on degenerate Moyal space(-time). J. Math. Phys., 54:022307, 2013, 1111.6856. doi: 10.1063/1.4790886. · Zbl 1280.81136 · doi:10.1063/1.4790886
[113] D. J. Gross and A. A. Migdal. Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett., 64:127-130, 1990. doi: 10.1103/PhysRevLett.64.127. · Zbl 1050.81610 · doi:10.1103/PhysRevLett.64.127
[114] H. Grosse and J. Madore. A noncommutative version of the Schwinger model. Phys. Lett., B283:218-222, 1992. doi: 10.1016/0370-2693(92)90011-R. · doi:10.1016/0370-2693(92)90011-R
[115] J. Gomis and T. Mehen. Space-time noncommutative field theories and unitarity. Nucl. Phys., B591:265-276, 2000, hep-th/0005129. doi: 10.1016/S0550-3213(00)00525-3. · Zbl 0991.81120 · doi:10.1016/S0550-3213(00)00525-3
[116] A. B. Goncharov and Y. I. Manin. Multiple ζ-motives and moduli spaces \(\overline{\mathfrak{M}}_{0,n} \). Compos. Math., 140(1):1-14, 2004. doi: 10.1112/S0010437X03000125. · Zbl 1047.11063 · doi:10.1112/S0010437X03000125
[117] R. Gurau, J. Magnen, V. Rivasseau, and A. Tanasa. A translation-invariant renormalizable non-commutative scalar model. Commun. Math. Phys., 287:275-290, 2009, 0802.0791. doi: 10.1007/s00220-008-0658-3. · Zbl 1170.81041 · doi:10.1007/s00220-008-0658-3
[118] H. Grosse, J. Madore, and H. Steinacker. Field theory on the q deformed fuzzy sphere. 1. J. Geom. Phys., 38:308-342, 2001, hep-th/0005273. doi: 10.1016/S0393-0440(00)00068-1. · Zbl 1130.81346 · doi:10.1016/S0393-0440(00)00068-1
[119] H. Grosse, J. Madore, and H. Steinacker. Field theory on the q deformed fuzzy sphere. 2. Quantization. J. Geom. Phys., 43:205-240, 2002, hep-th/0103164. doi: 10.1016/S0393-0440(02)00023-2. · Zbl 1130.81347 · doi:10.1016/S0393-0440(02)00023-2
[120] R. Gurau and V. Rivasseau. Parametric representation of noncommutative field theory. Commun. Math. Phys., 272:811-835, 2007, math-ph/0606030. doi: 10.1007/s00220-007-0215-5. · Zbl 1156.81465 · doi:10.1007/s00220-007-0215-5
[121] R. Gurau and V. Rivasseau. The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett., 95(5):50004, 2011, 1101.4182. doi: 10.1209/0295-5075/95/50004. · doi:10.1209/0295-5075/95/50004
[122] R. Gurau and J. P. Ryan. Colored tensor models - A review. SIGMA, 8:020, 2012, 1109.4812. doi: 10.3842/SIGMA.2012.020. · Zbl 1242.05094 · doi:10.3842/SIGMA.2012.020
[123] R. Gurau and V. Rivasseau. The multiscale loop vertex expansion. Annales Henri Poincaré, 16(8):1869-1897, 2015, 1312.7226. doi: 10.1007/s00023-014-0370-0. · Zbl 1321.81046 · doi:10.1007/s00023-014-0370-0
[124] R. Gurau, V. Rivasseau, and J. Magnen. Tree quantum field theory. Annales Henri Poincaré, 10:867-891, 2009, 0807.4122. doi: 10.1007/s00023-009-0002-2. · Zbl 1206.81073 · doi:10.1007/s00023-009-0002-2
[125] H. J. Groenewold. On the principles of elementary quantum mechanics. Physica, 12:405-460, 1946. doi: 10.1016/S0031-8914(46)80059-4. · Zbl 0060.45002 · doi:10.1016/S0031-8914(46)80059-4
[126] R. Gurau, V. Rivasseau, and A. Sfondrini. Renormalization: an advanced overview. 2014, 1401.5003.
[127] R. Gurau, V. Rivasseau, and F. Vignes-Tourneret. Propagators for noncommutative field theories. Annales Henri Poincaré, 7:1601-1628, 2006, hep-th/0512071. doi: 10.1007/s00023-006-0296-2. · Zbl 1110.81138 · doi:10.1007/s00023-006-0296-2
[128] H. Grosse and A. Strohmaier. Towards a nonperturbative covariant regularization in 4-D quantum field theory. Lett. Math. Phys., 48:163-179, 1999, hep-th/9902138. doi: 10.1023/A:1007518622795. · Zbl 0957.81090 · doi:10.1023/A:1007518622795
[129] S. S. Gubser and S. L. Sondhi. Phase structure of noncommutative scalar field theories. Nucl. Phys., B605:395-424, 2001, hep-th/0006119. doi: 10.1016/S0550-3213(01)00108-0. · Zbl 0969.81637 · doi:10.1016/S0550-3213(01)00108-0
[130] H. Grosse and H. Steinacker. A nontrivial solvable noncommutative ϕ^3 model in 4 dimensions. JHEP, 08:008, 2006, hep-th/0603052. doi: 10.1088/1126-6708/2006/08/008. · doi:10.1088/1126-6708/2006/08/008
[131] H. Grosse and H. Steinacker. Renormalization of the noncommutative ϕ^3 model through the Kontsevich model. Nucl. Phys., B746:202-226, 2006, hep-th/0512203. doi: 10.1016/j.nuclphysb.2006.04.007. · Zbl 1178.81190 · doi:10.1016/j.nuclphysb.2006.04.007
[132] H. Grosse and H. Steinacker. Exact renormalization of a noncommutative ϕ^3 model in 6 dimensions. Adv. Theor. Math. Phys., 12(3):605-639, 2008, hep-th/0607235. doi: 10.4310/ATMP.2008.v12.n3.a4. · Zbl 1177.81104 · doi:10.4310/ATMP.2008.v12.n3.a4
[133] H. Grosse, H. Steinacker, and M. Wohlgenannt. Emergent gravity, matrix models and UV/IR mixing. JHEP, 04:023, 2008, 0802.0973. doi: 10.1088/1126-6708/2008/04/023. · Zbl 1246.81162 · doi:10.1088/1126-6708/2008/04/023
[134] H. Grosse, A. Sako, and R. Wulkenhaar. Exact solution of matricial \(\Phi^3_2\) quantum field theory. Nucl. Phys., B925:319-347, 2017, 1610.00526. doi: 10.1016/j.nuclphysb.2017.10.010. · Zbl 1375.81170 · doi:10.1016/j.nuclphysb.2017.10.010
[135] H. Grosse, A. Sako, and R. Wulkenhaar. The \(\Phi^3_4\) and \(\Phi^3_6\) matricial QFT models have reflection positive two-point function. Nucl. Phys., B926:20-48, 2018, 1612.07584. doi: 10.1016/j.nuclphysb.2017.10.022. · Zbl 1380.81193 · doi:10.1016/j.nuclphysb.2017.10.022
[136] R. Gurau. Colored group field theory. Commun. Math. Phys., 304:69-93, 2011, 0907.2582. doi: 10.1007/s00220-011-1226-9. · Zbl 1214.81170 · doi:10.1007/s00220-011-1226-9
[137] R. Gurau. The 1/N expansion of colored tensor models. Annales Henri Poincaré, 12:829-847, 2011, 1011.2726. doi: 10.1007/s00023-011-0101-8. · Zbl 1218.81088 · doi:10.1007/s00023-011-0101-8
[138] R. Gurau. The complete 1/N expansion of colored tensor models in arbitrary dimension. Annales Henri Poincaré, 13:399-423, 2012, 1102.5759. doi: 10.1007/s00023-011-0118-z. · Zbl 1245.81118 · doi:10.1007/s00023-011-0118-z
[139] R. Gurau. The 1∕N expansion of tensor models beyond perturbation theory. Commun. Math. Phys., 330:973-1019, 2014, 1304.2666. doi: 10.1007/s00220-014-1907-2. · Zbl 1297.81126 · doi:10.1007/s00220-014-1907-2
[140] R. Gurau. Random Tensors. Oxford University Press, Oxford, 2017. · Zbl 1371.81007
[141] D. J. Gross and F. Wilczek. Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett., 30:1343-1346, 1973. doi: 10.1103/PhysRevLett.30.1343. · doi:10.1103/PhysRevLett.30.1343
[142] J. M. Grimstrup and R. Wulkenhaar. Quantisation of θ-expanded noncommutative QED. Eur. Phys. J., C26:139-151, 2002, hep-th/0205153. doi: 10.1140/epjc/s2002-01038-9. · Zbl 1099.81523 · doi:10.1140/epjc/s2002-01038-9
[143] H. Grosse and R. Wulkenhaar. Renormalisation of ϕ^4-theory on noncommutative \(\mathbb{R}^2\) in the matrix base. JHEP, 12:019, 2003, hep-th/0307017. doi: 10.1088/1126-6708/2003/12/019. · doi:10.1088/1126-6708/2003/12/019
[144] H. Grosse and R. Wulkenhaar. The β-function in duality covariant noncommutative ϕ^4-theory. Eur. Phys. J., C35:277-282, 2004, hep-th/0402093. doi: 10.1140/epjc/s2004-01853-x. · Zbl 1191.81207 · doi:10.1140/epjc/s2004-01853-x
[145] H. Grosse and R. Wulkenhaar. Power-counting theorem for non-local matrix models and renormalisation. Commun. Math. Phys., 254:91-127, 2005, hep-th/0305066. doi: 10.1007/s00220-004-1238-9. · Zbl 1079.81049 · doi:10.1007/s00220-004-1238-9
[146] H. Grosse and R. Wulkenhaar. Renormalisation of ϕ^4-theory on noncommutative \(\mathbb{R}^4\) in the matrix base. Commun. Math. Phys., 256:305-374, 2005, hep-th/0401128. doi: 10.1007/s00220-004-1285-2. · Zbl 1075.82005 · doi:10.1007/s00220-004-1285-2
[147] H. Grosse and M. Wohlgenannt. Induced gauge theory on a noncommutative space. Eur. Phys. J., C52:435-450, 2007, hep-th/0703169. doi: 10.1140/epjc/s10052-007-0369-5. · Zbl 1189.81217 · doi:10.1140/epjc/s10052-007-0369-5
[148] H. Grosse and R. Wulkenhaar. Progress in solving a noncommutative quantum field theory in four dimensions. 2009, 0909.1389. · Zbl 1305.81129
[149] H. Grosse and R. Wulkenhaar. 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory. J. Geom. Phys., 62:1583-1599, 2012, 0709.0095. doi: 10.1016/j.geomphys.2012.03.005. · Zbl 1243.58005 · doi:10.1016/j.geomphys.2012.03.005
[150] V. Gayral and R. Wulkenhaar. Spectral geometry of the Moyal plane with harmonic propagation. J. Noncommut. Geom., 7:939-979, 2013, 1108.2184. doi: 10.4171/JNCG/140. · Zbl 1295.46054 · doi:10.4171/JNCG/140
[151] H. Grosse and R. Wulkenhaar. Solvable limits of a 4D noncommutative QFT. 2013, 1306.2816. · Zbl 1334.81077
[152] H. Grosse and R. Wulkenhaar. Self-dual noncommutative ϕ^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. Commun. Math. Phys., 329:1069-1130, 2014, 1205.0465. doi: 10.1007/s00220-014-1906-3. · Zbl 1305.81129 · doi:10.1007/s00220-014-1906-3
[153] H. Grosse and R. Wulkenhaar. Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity. 2014, 1406.7755.
[154] H. Grosse and R. Wulkenhaar. On the fixed point equation of a solvable 4D QFT model. Vietnam J. Math., 44(1):153-180, 2016, 1505.05161. doi: 10.1007/s10013-015-0174-7. · Zbl 1334.81077 · doi:10.1007/s10013-015-0174-7
[155] R. Haag. Quantum field theories with composite particles and asymptotic conditions. Phys. Rev., 112:669-673, 1958. doi: 10.1103/PhysRev.112.669. · Zbl 0085.43602 · doi:10.1103/PhysRev.112.669
[156] R. Haag. Local quantum physics. Fields, particles, algebras. Texts and Monographs in Physics. Springer-Verlag, Berlin, second edition, 1996. doi: 10.1007/978-3-642-61458-3. · Zbl 0857.46057 · doi:10.1007/978-3-642-61458-3
[157] F. Hausdorff. Momentprobleme für ein endliches Intervall. Math. Z., 16(1):220-248, 1923. doi: 10.1007/BF01175684. · JFM 49.0193.01 · doi:10.1007/BF01175684
[158] E. Hawkins. Noncommutative regularization for the practical man. 1999, hep-th/9908052.
[159] M. Hayakawa. Perturbative analysis on infrared aspects of noncommutative QED on \(\mathbb{R}^4\). Phys. Lett., B478:394-400, 2000, hep-th/9912094. doi: 10.1016/S0370-2693(00)00242-2. · Zbl 1050.81719 · doi:10.1016/S0370-2693(00)00242-2
[160] W. Heisenberg. Die Grenzen der Anwendbarkeit der bisherigen Quantentheorie. Z. Phys., 110:251-266, 1938. doi: 10.1007/BF01342872. · Zbl 0021.27506 · doi:10.1007/BF01342872
[161] K. Hepp. Proof of the Bogolyubov-Parasiuk theorem on renormalization. Commun. Math. Phys., 2:301-326, 1966. doi: 10.1007/BF01773358. · Zbl 1222.81219 · doi:10.1007/BF01773358
[162] R. Haag and D. Kastler. An algebraic approach to quantum field theory. J. Math. Phys., 5:848-861, 1964. doi: 10.1063/1.1704187. · Zbl 0139.46003 · doi:10.1063/1.1704187
[163] A. Hock and R. Wulkenhaar. Noncommutative 3-colour scalar quantum field theory model in 2D. Eur. Phys. J., C78(7):580, 2018, 1804.06075. doi: 10.1140/epjc/s10052-018-6042-3. · doi:10.1140/epjc/s10052-018-6042-3
[164] S. Iso, Y. Kimura, K. Tanaka, and K. Wakatsuki. Noncommutative gauge theory on fuzzy sphere from matrix model. Nucl. Phys., B604:121-147, 2001, hep-th/0101102. doi: 10.1016/S0550-3213(01)00173-0. · Zbl 0983.81055 · doi:10.1016/S0550-3213(01)00173-0
[165] B. Iochum, C. Levy, and A. Sitarz. Spectral action on SU_q(2). Commun. Math. Phys., 289:107-155, 2009, 0803.1058. doi: 10.1007/s00220-009-0810-8. · Zbl 1173.46053 · doi:10.1007/s00220-009-0810-8
[166] B. Iochum, T. Masson, T. Schucker, and A. Sitarz. Compact κ-deformation and spectral triples. Rept. Math. Phys., 68:37-64, 2011, 1004.4190. doi: 10.1016/S0034-4877(11)60026-8. · Zbl 1275.46056 · doi:10.1016/S0034-4877(11)60026-8
[167] C. Itzykson and J. B. Zuber. Combinatorics of the modular group. 2. The Kontsevich integrals. Int. J. Mod. Phys., A7:5661-5705, 1992, hep-th/9201001. doi: 10.1142/S0217751X92002581. · Zbl 0972.14500 · doi:10.1142/S0217751X92002581
[168] A. Jaffe, K.-H. Neeb, G. Olafsson, and B. Schlein, editors. Reflection positivity, volume 14 of Oberwolfach Rep., 2017. doi: 10.4171/OWR/2017/55. · Zbl 1409.00095 · doi:10.4171/OWR/2017/55
[169] B. Jurčo, S. Schraml, P. Schupp, and J. Wess. Enveloping algebra valued gauge transformations for non-Abelian gauge groups on noncommutative spaces. Eur. Phys. J., C17:521-526, 2000, hep-th/0006246. doi: 10.1007/s100520000487. · Zbl 1099.81525 · doi:10.1007/s100520000487
[170] B. Jurčo, P. Schupp, and J. Wess. Non-Abelian noncommutative gauge theory via noncommutative extra dimensions. Nucl. Phys., B604:148-180, 2001, hep-th/0102129. doi: 10.1016/S0550-3213(01)00191-2. · Zbl 0983.81054 · doi:10.1016/S0550-3213(01)00191-2
[171] A. M. Jaffe and E. Witten. Quantum Yang-Mills theory. 2000. URL https://www.claymath.org/sites/default/files/yangmills.pdf. · Zbl 1194.81002
[172] M. Kac. On distributions of certain Wiener functionals. Trans. Amer. Math. Soc., 65:1-13, 1949. doi: 10.2307/1990512. · Zbl 0032.03501 · doi:10.2307/1990512
[173] A. Kitaev. A simple model of quantum holography. 1. Talk at KITP, 2015. URL http://online.kitp.ucsb.edu/online/entangled15/kitaev/.
[174] A. Kitaev. A simple model of quantum holography. 2. Talk at KITP, 2015. URL http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.
[175] T. Kōmura and Y. Kōmura. Über die Einbettung der nuklearen Räume in (s)^A. Math. Ann., 162:284-288, 1966. doi: 10.1007/BF01360917. · Zbl 0156.13402 · doi:10.1007/BF01360917
[176] A. Klein and L. J. Landau. Construction of a unique self-adjoint generator for a symmetric local semigroup. J. Funct. Anal., 44(2):121-137, 1981. doi: 10.1016/0022-1236(81)90007-0. · Zbl 0473.47023 · doi:10.1016/0022-1236(81)90007-0
[177] M. Kontsevich. Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys., 147:1-23, 1992. doi: 10.1007/BF02099526. · Zbl 0756.35081 · doi:10.1007/BF02099526
[178] M. Kontsevich. Deformation quantization of Poisson manifolds. 1. Lett. Math. Phys., 66:157-216, 2003, q-alg/9709040. doi: 10.1023/B:MATH.0000027508.00421.bf. · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[179] I. R. Klebanov, F. Popov, and G. Tarnopolsky. TASI lectures on large N tensor models. PoS, TASI2017:004, 2018, 1808.09434. doi: 10.22323/1.305.0004. · doi:10.22323/1.305.0004
[180] D. Kreimer. On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys., 2:303-334, 1998, q-alg/9707029. doi: 10.4310/ATMP.1998.v2.n2.a4. · Zbl 1041.81087 · doi:10.4310/ATMP.1998.v2.n2.a4
[181] D. Kreimer. Chen’s iterated integral represents the operator product expansion. Adv. Theor. Math. Phys., 3:627-670, 2000, hep-th/9901099. doi: 10.4310/ATMP.1999.v3.n3.a7. · Zbl 0971.81093 · doi:10.4310/ATMP.1999.v3.n3.a7
[182] T. Krajewski, V. Rivasseau, A. Tanasă, and Z. Wang. Topological graph polynomials and quantum field theory. I. Heat kernel theories. J. Noncommut. Geom., 4(1):29-82, 2010, 0811.0186. doi: 10.4171/JNCG/49. · Zbl 1186.81095 · doi:10.4171/JNCG/49
[183] T. Krajewski, V. Rivasseau, and F. Vignes-Tourneret. Topological graph polynomials and quantum field theory, part II. Mehler kernel theories. Annales Henri Poincaré, 12:483-545, 2011, 0912.5438. doi: 10.1007/s00023-011-0087-2. · Zbl 1217.81128 · doi:10.1007/s00023-011-0087-2
[184] R. Koekoek and R. F. Swarttouw. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. 1996, math/9602214.
[185] A. Konechny and A. S. Schwarz. Introduction to M(atrix) theory and noncommutative geometry. Phys. Rept., 360:353-465, 2002, hep-th/0012145. doi: 10.1016/S0370-1573(01)00096-5. · Zbl 0985.81126 · doi:10.1016/S0370-1573(01)00096-5
[186] P. P. Kulish. Factorization of the classical and quantum S-matrix and conservation laws. Theor. Math. Phys., 26:132, 1976. doi: 10.1007/BF01079418. [also in Teor. Mat. Fiz. 26:198, 1976]. · doi:10.1007/BF01079418
[187] T. Krajewski and R. Wulkenhaar. Perturbative quantum gauge fields on the noncommutative torus. Int. J. Mod. Phys., A15:1011-1030, 2000, hep-th/9903187. doi: 10.1142/S0217751X00000495. · Zbl 0963.81055 · doi:10.1142/S0217751X00000495
[188] J. L. Lagrange. Nouvelle méthode pour résoudre des équations littérales par le moyen de séries. Mém. Acad. Roy. des Sci. et Belles-Lettres de Berlin, 24, 1770.
[189] L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov. On the removal of infinities in quantum electrodynamics (in russ.). Dokl. Akad. Nauk SSSR, 95:497-500, 1954. · Zbl 0059.21904
[190] J. H. Lambert. Observationes variae in mathesin puram. Acta Helvetica, physico-mathematico-anatomico-botanico-medica, 3:128-168, 1758.
[191] G. Landi, F. Lizzi, and R. J. Szabo. From large N matrices to the noncommutative torus. Commun. Math. Phys., 217:181-201, 2001, hep-th/9912130. doi: 10.1007/s002200000356. · Zbl 0982.58004 · doi:10.1007/s002200000356
[192] G. Landi, F. Lizzi, and R. J. Szabo. A new matrix model for noncommutative field theory. Phys. Lett., B578:449-458, 2004, hep-th/0309031. doi: 10.1016/j.physletb.2003.10.059. · Zbl 1246.81408 · doi:10.1016/j.physletb.2003.10.059
[193] J. M. F. Labastida, M. Pernici, and E. Witten. Topological gravity in two dimensions. Nucl. Phys., B310:611-624, 1988. doi: 10.1016/0550-3213(88)90094-6. · doi:10.1016/0550-3213(88)90094-6
[194] E. Langmann and R. J. Szabo. Duality in scalar field theory on noncommutative phase spaces. Phys. Lett., B533:168-177, 2002, hep-th/0202039. doi: 10.1016/S0370-2693(02)01650-7. · Zbl 0994.81116 · doi:10.1016/S0370-2693(02)01650-7
[195] Y. Liao and K. Sibold. Time ordered perturbation theory on noncommutative space-time. 2. Unitarity. Eur. Phys. J., C25:479-486, 2002, hep-th/0206011. doi: 10.1007/s10052-002-1018-7. · Zbl 1078.81574 · doi:10.1007/s10052-002-1018-7
[196] Y. Liao and K. Sibold. Time ordered perturbation theory on noncommutative space-time: Basic rules. Eur. Phys. J., C25:469-477, 2002, hep-th/0205269. doi: 10.1007/s10052-002-1017-8. · Zbl 1078.81573 · doi:10.1007/s10052-002-1017-8
[197] E. Langmann, R. J. Szabo, and K. Zarembo. Exact solution of noncommutative field theory in background magnetic fields. Phys. Lett., B569:95-101, 2003, hep-th/0303082. doi: 10.1016/j.physletb.2003.07.020. · Zbl 1059.81608 · doi:10.1016/j.physletb.2003.07.020
[198] E. Langmann, R. J. Szabo, and K. Zarembo. Exact solution of quantum field theory on noncommutative phase spaces. JHEP, 01:017, 2004, hep-th/0308043. doi: 10.1088/1126-6708/2004/01/017. · Zbl 1243.81205 · doi:10.1088/1126-6708/2004/01/017
[199] S. K. Lando and A. K. Zvonkin. Graphs on surfaces and their applications, volume 141 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-38361-1. With an appendix by Don B. Zagier, Low-Dimensional Topology, II. · Zbl 1040.05001 · doi:10.1007/978-3-540-38361-1
[200] J. Madore. The fuzzy sphere. Class. Quant. Grav., 9:69-88, 1992. doi: 10.1088/0264-9381/9/1/008. · Zbl 0742.53039 · doi:10.1088/0264-9381/9/1/008
[201] J. Madore. An introduction to noncommutative differential geometry and its physical applications, volume 206 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1995. · Zbl 0842.58002
[202] R. A. Minlos. Generalized random processes and their extension in measure. Trudy Moskov. Mat. Obšč., 8:497-518, 1959. URL http://www.mathnet.ru/php/getFT.phtml?jrnid=mmo&paperid=94&what=fullt&option_lang=eng. · Zbl 0103.35901
[203] M. Mirzakhani. Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. Math., 167(1):179-222, 2007. doi: 10.1007/s00222-006-0013-2. · Zbl 1125.30039 · doi:10.1007/s00222-006-0013-2
[204] T. Miwa. On Hirota’s difference equations. Proc. Japan Acad. Ser. A Math. Sci., 58(1):9-12, 1982. http://projecteuclid.org/euclid.pja/1195516178. · Zbl 0508.39009 · doi:10.3792/pjaa.58.9
[205] J. Moser. Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math., 16:197-220, 1975. doi: 10.1016/0001-8708(75)90151-6. · Zbl 0303.34019 · doi:10.1016/0001-8708(75)90151-6
[206] J. E. Moyal. Quantum mechanics as a statistical theory. Proc. Cambridge Phil. Soc., 45:99-124, 1949. doi: 10.1017/S0305004100000487. · Zbl 0031.33601 · doi:10.1017/S0305004100000487
[207] R. C. Myers and V. Periwal. Topological gravity and moduli space. Nucl. Phys., B333:536-550, 1990. doi: 10.1016/0550-3213(90)90050-N. · doi:10.1016/0550-3213(90)90050-N
[208] J. Magnen and V. Rivasseau. Constructive ϕ^4 field theory without tears. Annales Henri Poincaré, 9:403-424, 2008, 0706.2457. doi: 10.1007/s00023-008-0360-1. · Zbl 1141.81022 · doi:10.1007/s00023-008-0360-1
[209] Yu. Makeenko and G. W. Semenoff. Properties of Hermitean matrix models in an external field. Mod. Phys. Lett., A6:3455-3466, 1991. doi: 10.1142/S0217732391003985. · Zbl 1020.81863 · doi:10.1142/S0217732391003985
[210] J. Maldacena and D. Stanford. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev., D94(10):106002, 2016, 1604.07818. doi: 10.1103/PhysRevD.94.106002. · doi:10.1103/PhysRevD.94.106002
[211] C. P. Martín and D. Sánchez-Ruiz. The one loop UV divergent structure of U(1) Yang-Mills theory on noncommutative \(\mathbb{R}^4\). Phys. Rev. Lett., 83:476-479, 1999, hep-th/9903077. doi: 10.1103/PhysRevLett.83.476. · Zbl 0958.81199 · doi:10.1103/PhysRevLett.83.476
[212] J. Madore, S. Schraml, P. Schupp, and J. Wess. Gauge theory on noncommutative spaces. Eur. Phys. J., C16:161-167, 2000, hep-th/0001203. doi: 10.1007/s100520050012. · doi:10.1007/s100520050012
[213] A. Matusis, L. Susskind, and N. Toumbas. The IR / UV connection in the noncommutative gauge theories. JHEP, 12:002, 2000, hep-th/0002075. doi: 10.1088/1126-6708/2000/12/002. · Zbl 0990.81549 · doi:10.1088/1126-6708/2000/12/002
[214] P. Martinetti and L. Tomassini. Noncommutative geometry of the Moyal plane: Translation isometries, Connes’ distance on coherent states, Pythagoras equality. Commun. Math. Phys., 323:107-141, 2013, 1110.6164. doi: 10.1007/s00220-013-1760-8. · Zbl 1283.81092 · doi:10.1007/s00220-013-1760-8
[215] S. Minwalla, M. Van Raamsdonk, and N. Seiberg. Noncommutative perturbative dynamics. JHEP, 02:020, 2000, hep-th/9912072. doi: 10.1088/1126-6708/2000/02/020. · Zbl 0959.81108 · doi:10.1088/1126-6708/2000/02/020
[216] M. Mirzakhani and P. Zograf. Towards large genus asymptotics of intersection numbers on moduli spaces of curves. Geom. Funct. Anal., 25(4):1258-1289, 2015, 1112.1151. doi: 10.1007/s00039-015-0336-5. · Zbl 1327.14136 · doi:10.1007/s00039-015-0336-5
[217] E. Nelson. Construction of quantum fields from Markoff fields. J. Functional Analysis, 12:97-112, 1973. doi: 10.1016/0022-1236(73)90091-8. · Zbl 0252.60053 · doi:10.1016/0022-1236(73)90091-8
[218] E. Nelson. Quantum fields and Markoff fields. In Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pages 413-420. Amer. Math. Soc., Providence, R.I., 1973. · Zbl 0279.60096
[219] N. Nielsen. Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova acta - Kaiserlich Leopoldinisch-Carolinische Deutsche Akademie der Naturforscher, 90(3):121-212, 1909. · JFM 40.0478.01
[220] K.-H. Neeb and G. Ólafsson. Reflection positivity, volume 32 of SpringerBriefs in Mathematical Physics. Springer, 2018. doi: 10.1007/978-3-319-94755-6. · Zbl 1403.22001 · doi:10.1007/978-3-319-94755-6
[221] A. E. Nussbaum. The Hausdorff-Bernstein-Widder theorem for semi-groups in locally compact Abelian groups. Duke Math. J., 22:573-582, 1955. URL http://projecteuclid.org/euclid.dmj/1077466543. · Zbl 0066.36001
[222] T. Ohl, R. Rückl, and J. Zeiner. Unitarity of time - like noncommutative gauge theories: The violation of Ward identities in time ordered perturbation theory. Nucl. Phys., B676:229-242, 2004, hep-th/0309021. doi: 10.1016/j.nuclphysb.2003.10.022. · Zbl 1097.81643 · doi:10.1016/j.nuclphysb.2003.10.022
[223] K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions. Commun. Math. Phys., 31:83-112, 1973. doi: 10.1007/BF01645738. · Zbl 0274.46047 · doi:10.1007/BF01645738
[224] K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions. 2. Commun. Math. Phys., 42:281-305, 1975. doi: 10.1007/BF01608978. · Zbl 0303.46034 · doi:10.1007/BF01608978
[225] E. Panzer. Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals. Computer Physics Communications, 188:148-166, 2015, 1403.3385. doi: 10.1016/j.cpc.2014.10.019. maintained and available at https://bitbucket.org/PanzerErik/hyperint. · Zbl 1344.81024 · doi:10.1016/j.cpc.2014.10.019
[226] R. Peierls. Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys., 80:763, 1933. · JFM 59.1576.09 · doi:10.1007/BF01342591
[227] D. Perrot. Anomalies and noncommutative index theory. In Geometric and topological methods for quantum field theory, volume 434 of Contemp. Math., pages 125-160. Amer. Math. Soc., Providence, RI, 2007, hep-th/0603209. doi: 10.1090/conm/434/08344. · Zbl 1137.19002 · doi:10.1090/conm/434/08344
[228] H. D. Politzer. Reliable perturbative results for strong interactions? Phys. Rev. Lett., 30:1346-1349, 1973. doi: 10.1103/PhysRevLett.30.1346. · doi:10.1103/PhysRevLett.30.1346
[229] J. Polchinski. Renormalization and effective Lagrangians. Nucl. Phys., B231:269-295, 1984. doi: 10.1016/0550-3213(84)90287-6. · doi:10.1016/0550-3213(84)90287-6
[230] E. Panzer and R. Wulkenhaar. Lambert-W solves the noncommutative Φ^4-model. Commun. Math. Phys. (in press), 2019/20, http://arxiv.org/abs/1807.02945, doi: 10.1007/s00220-019-03592-4. · Zbl 1436.81091 · doi:10.1007/s00220-019-03592-4
[231] B. Riemann. Ueber die Hypothesen, welche der Geometrie zugrunde liegen. In Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlaß, Leipzig, 1892. B. G. Teubner. URL https://www.emis.de/classics/Riemann/Geom.pdf.
[232] M. A. Rieffel. Noncommutative tori—a case study of noncommutative differentiable manifolds. In Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988), volume 105 of Contemp. Math., pages 191-211. Amer. Math. Soc., Providence, RI, 1990. doi: 10.1090/conm/105/1047281. · Zbl 0713.46046 · doi:10.1090/conm/105/1047281
[233] M. A. Rieffel. Deformation quantization for actions of R^d. Mem. Amer. Math. Soc., 106(506):x+93, 1993. doi: 10.1090/memo/0506. · Zbl 0798.46053 · doi:10.1090/memo/0506
[234] M. A. Rieffel. Gromov-Hausdorff distance for quantum metric spaces. Mem. Amer. Math. Soc., 168(796):viii+91, 2004, math/0011063. doi: 10.1090/memo/0796. · Zbl 1043.46052 · doi:10.1090/memo/0796
[235] V. Rivasseau. From Perturbative to Constructive Renormalization. Princeton University Press, New Jersey, 1991. · doi:10.1515/9781400862085
[236] V. Rivasseau. Constructive matrix theory. JHEP, 09:008, 2007, 0706.1224. doi: 10.1088/1126-6708/2007/09/008. · doi:10.1088/1126-6708/2007/09/008
[237] V. Rivasseau. Non-commutative renormalization. In Quantum Spaces, volume 53 of Progress in Mathematical Physics, pages 19-107. Birkhäuser, Basel, 2007, 0705.0705. doi: 10.1007/978-3-7643-8522-4_2. · Zbl 1139.81047 · doi:10.1007/978-3-7643-8522-4_2
[238] V. Rivasseau. The tensor track, III. Fortsch. Phys., 62:81-107, 2014, 1311.1461. doi: 10.1002/prop.201300032. · Zbl 1338.83085 · doi:10.1002/prop.201300032
[239] D. Ruelle. On the asymptotic condition in quantum field theory. Helv. Phys. Acta, 35:147-163, 1962. doi: 10.5169/seals-113272. · Zbl 0158.45702 · doi:10.5169/seals-113272
[240] V. Rivasseau, F. Vignes-Tourneret, and R. Wulkenhaar. Renormalization of noncommutative ϕ^4-theory by multi-scale analysis. Commun. Math. Phys., 262:565-594, 2006, hep-th/0501036. doi: 10.1007/s00220-005-1440-4. · Zbl 1109.81056 · doi:10.1007/s00220-005-1440-4
[241] V. Rivasseau and Z. Wang. Constructive renormalization for \(\Phi^4_2\) theory with loop vertex expansion. J. Math. Phys., 53:042302, 2012, 1104.3443. doi: 10.1063/1.4705689. · Zbl 1275.81073 · doi:10.1063/1.4705689
[242] V. Rivasseau and Z. Wang. Corrected loop vertex expansion for \(\Phi_2^4\) theory. J. Math. Phys., 56(6):062301, 2015, 1406.7428. doi: 10.1063/1.4922116. · Zbl 1317.81190 · doi:10.1063/1.4922116
[243] E. Schrödinger. Über die Unanwendbarkeit der Geometrie im Kleinen. Naturwiss., 31:518-520, 1934. doi: 10.1007/BF01494946. · Zbl 0009.38101 · doi:10.1007/BF01494946
[244] J. Schwinger. Euclidean quantum electrodynamics. Phys. Rev., 115:721-731, 1959. doi: 10.1103/PhysRev.115.721. · Zbl 0087.23202 · doi:10.1103/PhysRev.115.721
[245] V. Schomerus. D-branes and deformation quantization. JHEP, 06:030, 1999, hep-th/9903205. doi: 10.1088/1126-6708/1999/06/030. · Zbl 0961.81066 · doi:10.1088/1126-6708/1999/06/030
[246] G. Segal. Topological structures in string theory. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 359(1784):1389-1398, 2001. doi: 10.1098/rsta.2001.0841. Topological methods in the physical sciences (London, 2000). · Zbl 1041.81094 · doi:10.1098/rsta.2001.0841
[247] B. Simon. TheP(ϕ)_2Euclidean (quantum) field theory. Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics. · Zbl 1175.81146
[248] M. M. Sheikh-Jabbari. Renormalizability of the supersymmetric Yang-Mills theories on the noncommutative torus. JHEP, 06:015, 1999, hep-th/9903107. doi: 10.1088/1126-6708/1999/06/015. · Zbl 0961.81123 · doi:10.1088/1126-6708/1999/06/015
[249] H. S. Snyder. Quantized space-time. Phys. Rev., 71:38-41, 1947. doi: 10.1103/PhysRev.71.38. · Zbl 0035.13101 · doi:10.1103/PhysRev.71.38
[250] P. Schaller and T. Strobl. Poisson structure induced (topological) field theories. Mod. Phys. Lett., A9:3129-3136, 1994, hep-th/9405110. doi: 10.1142/S0217732394002951. · Zbl 1015.81574 · doi:10.1142/S0217732394002951
[251] H. Steinacker. Quantized gauge theory on the fuzzy sphere as random matrix model. Nucl. Phys., B679:66-98, 2004, hep-th/0307075. doi: 10.1016/j.nuclphysb.2003.12.005. · Zbl 1045.81526 · doi:10.1016/j.nuclphysb.2003.12.005
[252] H. Steinacker. Emergent gravity from noncommutative gauge theory. JHEP, 12:049, 2007, 0708.2426. doi: 10.1088/1126-6708/2007/12/049. · Zbl 1246.81153 · doi:10.1088/1126-6708/2007/12/049
[253] H. Steinacker. Emergent geometry and gravity from matrix models: an introduction. Class. Quant. Grav., 27:133001, 2010, 1003.4134. doi: 10.1088/0264-9381/27/13/133001. · Zbl 1255.83007 · doi:10.1088/0264-9381/27/13/133001
[254] K. Strebel. On quadratic differentials with closed trajectories and second order poles. J. Analyse Math., 19:373-382, 1967. doi: 10.1007/BF02788726. · Zbl 0158.32402 · doi:10.1007/BF02788726
[255] K. Strebel. Quadratic differentials, volume 5 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-662-02414-0. · Zbl 0547.30001 · doi:10.1007/978-3-662-02414-0
[256] R. Streater and A. Wightman. PCT, Spin and Statistics, and All that. W. A. Benjamin Inc., 1964. · Zbl 0135.44305
[257] N. Seiberg and E. Witten. String theory and noncommutative geometry. JHEP, 09:032, 1999, hep-th/9908142. doi: 10.1088/1126-6708/1999/09/032. · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[258] S. Sachdev and J. Ye. Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys. Rev. Lett., 70:3339, 1993, cond-mat/9212030. doi: 10.1103/PhysRevLett.70.3339. · doi:10.1103/PhysRevLett.70.3339
[259] K. Symanzik. Application of functional integrals to Euclidean quantum field theory. In Proc. Conf. on Theory and Appl. of Analysis in Function Space (Dedham, Mass. 1963), pages 197-206. The M.I.T. Press, Cambridge, Mass., 1964.
[260] R. J. Szabo. Quantum field theory on noncommutative spaces. Phys. Rept., 378:207-299, 2003, hep-th/0109162. doi: 10.1016/S0370-1573(03)00059-0. · Zbl 1042.81581 · doi:10.1016/S0370-1573(03)00059-0
[261] G. ’t Hooft. A planar diagram theory for strong interactions. Nucl. Phys., B72:461-473, 1974. doi: 10.1016/0550-3213(74)90154-0. · doi:10.1016/0550-3213(74)90154-0
[262] F. G. Tricomi. Integral equations. Interscience, New York, 1957. · Zbl 0078.09404
[263] D. V. Vassilevich. Noncommutative heat kernel. Lett. Math. Phys., 67:185-194, 2004, hep-th/0310144. doi: 10.1023/B:MATH.0000035037.50663.b1. · Zbl 1053.81083 · doi:10.1023/B:MATH.0000035037.50663.b1
[264] J. C. Várilly and J. M. Gracia-Bondía. Algebras of distributions suitable for phase-space quantum mechanics. 2. Topologies on the Moyal algebra. J. Math. Phys., 29:880-887, 1988. doi: 10.1063/1.527984. · Zbl 0652.46027 · doi:10.1063/1.527984
[265] J. C. Várilly and J. M. Gracia-Bondía. On the ultraviolet behavior of quantum fields over noncommutative manifolds. Int. J. Mod. Phys., A14:1305, 1999, hep-th/9804001. doi: 10.1142/S0217751X99000671. · Zbl 1045.81550 · doi:10.1142/S0217751X99000671
[266] J. von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer-Verlag, Berlin, 1932. URL http://resolver.sub.uni-goettingen.de/purl?PPN379400774. · JFM 58.0929.06
[267] D. Vogt. Lectures on Fréchet spaces, 2000. URL http://www2.math.uni-wuppertal.de/ vogt/vorlesungen/fs.pdf.
[268] F. Vignes-Tourneret. Renormalization of the orientable non-commutative Gross-Neveu model. Annales Henri Poincaré, 8:427-474, 2007, math-ph/0606069. doi: 10.1007/s00023-006-0312-6. · Zbl 1133.81058 · doi:10.1007/s00023-006-0312-6
[269] Z. Wang. Constructive renormalization of the 2-dimensional Grosse-Wulkenhaar model. Annales Henri Poincaré, 19(8):2435-2490, 2018, 1805.06365. doi: 10.1007/s00023-018-0688-0. · Zbl 1456.81306 · doi:10.1007/s00023-018-0688-0
[270] H. Weyl. Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig, 1928. · JFM 54.0954.03
[271] A. Wightman and L. Gårding. Fields as operator-valued distributions in relativistic quantum theory. Arkiv för fysik. Almqvist & Wiksell, 1964. · Zbl 0138.45401
[272] J. A. Wheeler. Geons. Phys. Rev., 97:511-536, 1955. doi: 10.1103/PhysRev.97.511. · Zbl 0064.22404 · doi:10.1103/PhysRev.97.511
[273] D. V. Widder. Necessary and sufficient conditions for the representation of a function as a Laplace integral. Trans. Amer. Math. Soc., 33(4):851-892, 1931. doi: 10.2307/1989513. · Zbl 0003.12201 · doi:10.2307/1989513
[274] E. P. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749-760, 1932. doi: 10.1103/PhysRev.40.749. · Zbl 0004.38201 · doi:10.1103/PhysRev.40.749
[275] A. S. Wightman. Quantum field theory in terms of vacuum expectation values. Phys. Rev., 101:860-866, 1956. doi: 10.1103/PhysRev.101.860. · Zbl 0074.22902 · doi:10.1103/PhysRev.101.860
[276] K. G. Wilson. Confinement of quarks. Phys. Rev., D10:2445-2459, 1974. doi: 10.1103/PhysRevD.10.2445. · doi:10.1103/PhysRevD.10.2445
[277] E. Witten. Topological quantum field theory. Commun. Math. Phys., 117:353, 1988. doi: 10.1007/BF01223371. · Zbl 0656.53078 · doi:10.1007/BF01223371
[278] E. Witten. On the structure of the topological phase of two-dimensional gravity. Nucl. Phys., B340:281-332, 1990. doi: 10.1016/0550-3213(90)90449-N. · doi:10.1016/0550-3213(90)90449-N
[279] E. Witten. Two-dimensional gravity and intersection theory on moduli space. In Surveys in differential geometry (Cambridge, MA, 1990), pages 243-310. Lehigh Univ., Bethlehem, PA, 1991. doi: 10.4310/SDG.1990.v1.n1.a5. · Zbl 0757.53049 · doi:10.4310/SDG.1990.v1.n1.a5
[280] E. Witten. On the Kontsevich model and other models of two-dimensional gravity. In Differential geometric methods in theoretical physics. Proceedings, 20th International Conference, New York, 1991, pages 176-216. World Sci. Publ., River Edge, NJ, 1992. · Zbl 0815.53090
[281] E. Witten. An SYK-like model without disorder. 2016, 1610.09758.
[282] K. G. Wilson and J. B. Kogut. The renormalization group and the 𝜖 expansion. Phys. Rept., 12:75-199, 1974. doi: 10.1016/0370-1573(74)90023-4. · doi:10.1016/0370-1573(74)90023-4
[283] R. Wulkenhaar. Slavnov-Taylor identity in noncommutative geometry. Int. J. Mod. Phys., B14:2503-2509, 2000. doi: 10.1142/S0217979200002053. · Zbl 1073.81619 · doi:10.1142/S0217979200002053
[284] R. Wulkenhaar. Non-renormalizability of θ-expanded noncommutative QED. JHEP, 03:024, 2002, hep-th/0112248. doi: 10.1088/1126-6708/2002/03/024. · doi:10.1088/1126-6708/2002/03/024
[285] R. Wulkenhaar. Field theories on deformed spaces. J. Geom. Phys., 56:108-141, 2006. doi: 10.1016/j.geomphys.2005.04.019. · Zbl 1083.81014 · doi:10.1016/j.geomphys.2005.04.019
[286] J. W. Zahn. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space. PhD thesis, Hamburg U., 2006, 0707.2149. URL http://www-library.desy.de/cgi-bin/showprep.pl?thesis06-037.
[287] J. Zahn. Divergences in quantum field theory on the noncommutative two-dimensional Minkowski space with Grosse-Wulkenhaar potential. Annales Henri Poincaré, 12:777-804, 2011, 1005.0541. doi: 10.1007/s00023-011-0089-0. · Zbl 1222.81276 · doi:10.1007/s00023-011-0089-0
[288] W. · Zbl 0192.61203 · doi:10.1007/BF01645676
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.