×

Periodic truss structures. (English) Zbl 1482.74057

Summary: Despite the recognition of the enormous potential of periodic trusses for use in a broad range of technologies, there are no widely-accepted descriptors of their structure. The terminology has been based loosely either on geometry of polyhedra or of point lattices: neither of which, on its own, has an appropriate structure to fully define periodic trusses. The present article lays out a system for classification of truss structure types. The system employs concepts from crystallography and geometry to describe nodal locations and connectivity of struts. Through a series of illustrative examples of progressively increasing complexity, a rational taxonomy of truss structure is developed. Its conceptual evolution begins with elementary cubic trusses, increasing in complexity with non-cubic and compound trusses as well as supertrusses, and, finally, with complex trusses. The conventions and terminology adopted to define truss structure yield concise yet unambiguous descriptions of structure types and of specific (finite) trusses. The utility of the taxonomy is demonstrated by bringing into alignment a disparate set of ad hoc and incomplete truss designations previously employed in a broad range of science and engineering fields. Additionally, the merits of a particular compound truss (comprising two interpenetrating elementary trusses) is shown to be superior to the octet truss for applications requiring high stiffness and elastic isotropy. By systematically stepping through and analyzing the finite number of structure types identified through the present classification system, optimal structures for prescribed mechanical and functional requirements are expected to be ascertained in an expeditious manner.

MSC:

74E15 Crystalline structure
Full Text: DOI

References:

[1] Bauer, J.; Hengsbach, S.; Tesari, I.; Schwaiger, R.; Kraft, O., High-strength cellular ceramic composites with 3D microarchitecture, Proc. Nat. Acad. Sci., 111, 2453 (2014)
[2] Bernal-Ostos, J.; Rinaldi, R. G.; Hammetter, C. I.; Stucky, G. D.; Zok, F. W.; Jacobsen, A. J., Deformation stabilization of lattice structures via foam addition, Acta Mater., 60, 6476 (2012)
[3] Bückmann, T.; Stenger, N.; Kadic, M.; Kaschke, J.; Frölich, A.; Kennerknecht, T.; Eberl, C.; Thiel, M.; Wegener, M., Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography, Adv. Mater., 24, 2710 (2012)
[4] Cheng, X. Y.; Li, S. J.; Murr, L. E.; Zhang, Z. B.; Hao, Y. L.; Yang, R.; Medina, F.; Wicker, R. B., Compression deformation behavior of Ti-6A1-4V alloy with cellular structures fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater., 16, 153 (2012)
[5] Chiras, S.; Mumm, D. R.; Evans, A. G.; Wicks, N.; Hutchinson, J. W.; Dharmasena, K.; Wadley, H. N.G.; Fichter, S., The structural performance of near-optimized truss-core panels, Int. J. Solids Struct., 39, 4093 (2002)
[6] Deshpande, V. S.; Fleck, N. A.; Ashby, M. F., Effective properties of the octet-truss lattice material, J. Mech. Phys. Solids, 49, 1747 (2001) · Zbl 1011.74056
[7] Doty, R. E.; Kolodziejska, J. A.; Jacobsen, A. J., Hierarchical polymer microlattice structures, Adv. Eng. Mater., 14, 503 (2012)
[8] Evans, A. G.; Hutchinson, J. W.; Fleck, N. A.; Ashby, M. F.; Wadley, H. N.G., The topological design of multifunctional cellular metals, Prog. Mater. Sci., 46, 309 (2001)
[9] Gibson, L. J.; Ashby, M. F., Cellular Solids: Structure and Properties (1997), Cambridge University Press: Cambridge University Press Cambridge
[10] Gilman, J.J., Tetrahedral truss, US Patent 4,446,666, 1984.; Gilman, J.J., Tetrahedral truss, US Patent 4,446,666, 1984.
[11] Gurtner, G.; Durand, M., Stiffest elastic networks, Proc. R. Soc. A, 470, 20130611 (2014) · Zbl 1371.74230
[12] Hammetter, C. I.; Rinaldi, R. G.; Zok, F. W., Periodic truss lattices for high strength and energy absorption, J. Appl. Mech., 80, 041015 (2012)
[13] Hutchinson, R. G.; Wicks, N.; Evans, A. G.; Fleck, N. A.; Hutchinson, J. W., Kagome plate structures for actuation, Int. J. Solids Struct., 40, 6969-6980 (2003) · Zbl 1071.74033
[14] Jacobsen, A. J.; Barvosa-Carter, W.; Nutt, S., Micro-scale truss structures formed from self-propagating photopolymer waveguides, Adv. Mater., 19, 3892 (2007)
[15] Jacobsen, A. J.; Barvosa-Carter, W.; Nutt, S., Compression behavior of micro-scale truss structures formed from self-propagating polymer waveguides, Acta Mater., 55, 6724 (2007)
[16] Jacobsen, A. J.; Barvosa-Carter, W.; Nutt, S., Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides, Acta Mater., 56, 2540 (2008)
[17] Kang, K. J., Wire-woven cellular metals: the present and future, Prog. Mater. Sci., 69, 213-307 (2015)
[18] Kraft, R.W., Construction arrangement, US Patent 3,139,959, 1961.; Kraft, R.W., Construction arrangement, US Patent 3,139,959, 1961.
[19] Li, S. J.; Xu, Q. S.; Wang, Z.; Hou, W. T.; Hao, Y. L.; Yang, R.; Murr, L. E., Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method, Acta Biomater., 10, 4537 (2014)
[20] Lucato, S. L.S.; Wang, J.; Maxwell, P.; McMeeking, R. M.; Evans, A. G., Design and demonstration of a high authority shape morphing structure, Int. J. Solids Struct., 41, 3521-3543 (2004) · Zbl 1119.74482
[21] Murr, L. E.; Amato, K. N.; Li, S. J.; Tian, Y. X.; Cheng, X. Y.; Gaytan, S. M.; Martinez, E.; Shindo, P. W.; Medina, F.; Wicker, R. B., Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater., 4, 1396 (2011)
[22] Murr, L. E.; Gaytan, S. M.; Medina, F.; Lopez, H.; Martinez, E.; Machado, B. I.; Hernandez, D. H.; Martinez, L.; Lopez, M. I.; Wicker, R. B.; Bracke, J., Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, Philos. Trans. R. Soc. A, 368, 1999 (2010)
[23] Nye, J. F., Physical Properties of Crystals (1985), Clarendon Press: Clarendon Press Oxford, UK, (Chap VIII) · Zbl 0079.22601
[24] Pettermann, H. E.; Husing, J., Modeling and simulation of relaxation in viscoelastic open cell materials, Int. J. Solids Struct., 49, 2848 (2012)
[25] Rathbun, H. J.; Wei, Z.; He, M. Y.; Zok, F. W.; Evans, A. G.; Sypeck, D. J.; Wadley, H. N.G., Measurement and simulation of the performance of a lightweight metallic sandwich structure with a tetrahedral truss core, J. Appl. Mech., 71, 368 (2004) · Zbl 1111.74609
[26] Wadley, H. N.G., Multifunctional periodic cellular metals, Philos. Trans. R. Soc. A, 364, 31 (2000)
[27] Wadley, H. N.G.; Fleck, N. A.; Evans, A. G., Fabrication and structural performance of periodic cellular metal sandwich structures, Compos. Sci. Technol., 63, 2331 (2003)
[28] Wainwright, S. A.; Briggs, W. D.; J Currey, J. D.; Gosline, J. M., Mechanical Design in Organisms (1982), Princeton University Press: Princeton University Press Princeton, New Jersey
[29] Wallach, J. C.; Gibson, L. J., Mechanical behaviour of a three-dimensional truss material, Int. J. Solids Struct., 38, 7181 (2001) · Zbl 0981.74510
[30] (Weaire, D., The Kelvin Problem: Foam Structures of Minimal Surface Area (1996), Taylor and Francis: Taylor and Francis London, UK) · Zbl 0901.53001
[31] Wicks, N.; Hutchinson, J. W., Optimal truss plates, Int. J. Solids Struct., 38, 30-31, 5165-5183 (2001) · Zbl 0995.74054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.