×

Solution of fuzzy singular integral equation with Abel’s type kernel using a novel hybrid method. (English) Zbl 1482.65232

Summary: In this paper, we are applying a novel analytical hybrid method to find the solution of a fuzzy Volterra Abel’s integral equation of the second kind. The fuzzy number is used in its parametric form under which the fuzzy Volterra Abel’s integral equation will be converted into a system of integral equations as in a crisp case. Moreover, to solve the general fuzzy Volterra integral equation with Abel’s-type kernel, and to show that the proposed method is efficient, a few accurate and simple examples are given for the demonstration of our results.

MSC:

65R20 Numerical methods for integral equations
45D05 Volterra integral equations
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
26E50 Fuzzy real analysis
44A10 Laplace transform

References:

[1] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2] Chang, S. S.L.; Zadeh, L. A., On fuzzy mapping and control, IEEE Trans. Syst. Man Cybern., 2, 30-34 (1972) · Zbl 0305.94001 · doi:10.1109/ICSMC.2002.1173380
[3] Dubois, D.; Prade, H., Towards fuzzy differential calculus, Fuzzy Sets Syst., 8, 1-7 (1982) · Zbl 0493.28002 · doi:10.1016/0165-0114(82)90025-2
[4] Goetschel, R.; Vaxman, W., Elementary fuzzy calculus, Fuzzy Sets Syst., 18, 31-43 (1986) · Zbl 0626.26014 · doi:10.1016/0165-0114(86)90026-6
[5] Kaleva, O., Fuzzy differential, Fuzzy Sets Syst., 24, 301-317 (1987) · Zbl 0646.34019 · doi:10.1016/0165-0114(87)90029-7
[6] Dubois, D.; Prade, H., Towards fuzzy differential calculus part 1: integration of fuzzy mappings, J. Approx. Theory, 8, 1, 1-17 (1982) · Zbl 0493.28002
[7] Sing, H.; Gupta, M. M.; Meitzler, T.; Hou, Z. G.; Garg, K. K.; Solo, A. M.G.; Zadeh, L. A., Real-life application of fuzzy logic, Adv. Fuzzy Syst., 2013 (2013)
[8] Parihar, A. S.; Verma, O. P.; Khanna, C., Fuzzy-contextual contrast enhancement, IEEE Trans. Image Process., 26, 1810-1819 (2017) · Zbl 1409.94480 · doi:10.1109/TIP.2017.2665975
[9] Matloka, M., On fuzzy integrals, Proc. 2nd Polish Symp. on Interval and Fuzzy Mathematics Politechnika Poznansk, 167-170 (1987)
[10] Nanda, S., On integration of fuzzy mappings, Fuzzy Sets Syst., 32, 1, 95-101 (1989) · Zbl 0671.28009 · doi:10.1016/0165-0114(89)90090-0
[11] Jafarian, A.; Nia, S. M., Application of Taylor expansion method for the Volterra fuzzy integral equations system, Acta Univ. M. Belii Ser. Math., 20, 21-34 (2012)
[12] Ghanbari, M.; Allahviranloo, T., A new application of homotopy analysis method, Thai J. Math., 10, 1, 43-57 (2012) · Zbl 1262.65197
[13] Matinfar, M.; Saeidy, M., Application of homotopy perturbation method for fuzzy integral equations, J. Math. Comput. Sci., 1, 4, 377-385 (2010) · Zbl 1195.65140 · doi:10.22436/jmcs.001.04.15
[14] Ezzati, R.; Ziari, S., Numerical solution and error estimation of fuzzy Fredholm integral equation using fuzzy Bernstein polynomials, Aust. J. Basic Appl. Sci., 5, 9, 2072-2082 (2011)
[15] Ahmadian, A.; Salahshour, S.; Chan, C. S.; Baleanu, D., Numerical solutions of fuzzy differential equations by an efficient Runge-Kutta method with generalized differentiability, Fuzzy Sets Syst., 331, 47-67 (2018) · Zbl 1387.65069 · doi:10.1016/j.fss.2016.11.013
[16] Dhandapani, P. B.; Baleanu, D.; Thippan, J.; Sivakumar, V., Fuzzy type RK4 solutions to fuzzy hybrid retarded delay differential equations, Front. Phys., 7, 168, 1-6 (2019)
[17] Slahshour, S.; Ahmadian, A.; Baleanu, D., Variation of constant formula for the solution of interval differential equations of non-integer order, Eur. Phys. J. Spec. Top., 226, 3501-3512 (2017) · doi:10.1140/epjst/e2018-00064-2
[18] Ahmadian, A.; Ismail, F.; Salahshour, S.; Baleanu, D.; Ghaemi, F., Uncertain viscoelastic models with fractional order: a new spectral tau method to study the numerical simulations of the solution, Commun. Nonlinear Sci. Numer. Simul., 53, 44-64 (2017) · Zbl 1455.76014 · doi:10.1016/j.cnsns.2017.03.012
[19] Agarwala, R. P.; Baleanu, D.; Nieto, J. J.; Torrese, D. F.M.; Zhou, Y., A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339, 3-29 (2018) · Zbl 1388.34005 · doi:10.1016/j.cam.2017.09.039
[20] Otadi, M.; Molish, M., Numerical solution of fuzzy nonlinear integral equations of the second kind, Iran. J. Fuzzy Syst., 11, 135-145 (2014) · Zbl 1338.65292
[21] Shafiee, M.; Abbasbandy, S.; Allahviranloo, T., Predictor-corrector method for nonlinear fuzzy Volterra integral equations, Aust. J. Basic Appl. Sci., 5, 12, 2865-2874 (2011)
[22] Allahveranloo, T.; Khezerloo, M.; Sedaghatfar, O.; Salahshour, S., Toward the existence and uniqueness of solutions of second kind fuzzy Volterra integro-differential equations with fuzzy kernel, Neural Comput. Appl., 22, 1, 133-141 (2013) · doi:10.1007/s00521-012-0849-x
[23] Fadravi, H. H.; Buzhabadi, R.; Nik, H. S., Solving linear Fredholm fuzzy integral equations of the second kind by artificial neural networks, Alex. Eng. J., 53, 249-257 (2014) · doi:10.1016/j.aej.2013.12.002
[24] Mirzaee, F., Numerical solution of Fredholm fuzzy integral equations of the second kind using hybrid of block-pulse functions and Taylor series, Ain Shams Eng. J., 5, 631-636 (2014) · doi:10.1016/j.asej.2013.12.011
[25] Hajighasemi, S.; Allahveranloo, T.; Khezerloo, M.; Khorasany, M.; Salahshour, S., Existence and uniqueness of fuzzy Volterra integro-differential equations, Inf. Process. Manag. Uncertainty Knowl. Based Syst., 81, 491-500 (2010) · Zbl 1201.45008
[26] Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72, 6, 2859-2862 (2010) · Zbl 1188.34005 · doi:10.1016/j.na.2009.11.029
[27] El-Sayed, A. M.A., Fractional-order diffusion-wave equation, Int. J. Theor. Phys., 35, 2, 311-322 (1996) · Zbl 0846.35001 · doi:10.1007/BF02083817
[28] Nieto, J. J., Maximum principles for fractional differential equations derived from Mittag-Leffler functions, Appl. Math. Lett., 23, 10, 1248-1251 (2010) · Zbl 1202.34019 · doi:10.1016/j.aml.2010.06.007
[29] Shen, Y.; Yang, S.; Sui, C., Analysis on limit cycle of fractional-order van der Pol oscillator, Chaos Solitons Fractals, 67, 94-102 (2014) · Zbl 1349.34019 · doi:10.1016/j.chaos.2014.07.001
[30] Wazwaz, A. M., Linear and Non-linear Integral Equations Methods and Applications (2011), Beijing: Higher Education Press, Beijing · Zbl 1227.45002
[31] Wazwaz, A. M., A First Course in Integral Equations (2007), Singapore: World Scientific, Singapore
[32] Pandey, R. K.; Singh, O. P.; Singh, V. K., Efficient algorithms to solve singular integral equations of Abel’s type, Comput. Math. Appl., 57, 664-676 (2009) · Zbl 1165.45303 · doi:10.1016/j.camwa.2008.10.085
[33] Singh, V. K.; Pandey, R. K.; Singh, O. P., New stable numerical solutions of singular integral equations of Abel’s type by using normalized Bernstein polynomials, Appl. Math. Sci., 3, 241-255 (2009) · Zbl 1175.65152
[34] Herman, G. T., Image reconstruction from projections, Real-Time Imaging, 1, 3-18 (1995) · doi:10.1006/rtim.1995.1002
[35] Liao, S., Comparison between the homotopy analysis method and homotopy perturbation method, Appl. Math. Comput., 169, 1186-1194 (2005) · Zbl 1082.65534
[36] Shah, R.; Khan, H.; Arif, M.; Kumam, P., Application of Laplace Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations, Entropy, 21 (2019) · doi:10.3390/e21040335
[37] Manafianheris, J., Solving the integro-differential equations using the modified Laplace Adomian decomposition method, J. Math. Ext., 6, 1, 41-55 (2012) · Zbl 1310.35237
[38] Allahviranloo, T.; Barkhordari Ahmadi, M., Fuzzy Laplace transforms, Soft Comput., 14, 235-243 (2010) · Zbl 1187.44001 · doi:10.1007/s00500-008-0397-6
[39] Salahshour, S.; Khezerloo, M.; Hajighasemi, S.; Khorasany, M., Solving fuzzy integral equations of the second kind by Laplace transform method, Int. J. Ind. Math., 4, 1, 21-29 (2012)
[40] Li, Y.; Chen, Y. Q.; Podlubny, I., Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 8, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[41] Friedman, M.; Ma, M.; Kandel, A., Numerical solution of fuzzy differential and integral equations, Fuzzy Sets Syst., 106, 35-48 (1999) · Zbl 0931.65076 · doi:10.1016/S0165-0114(98)00355-8
[42] Park, J. Y.; Jeong, J. U., A note on fuzzy integral equations, Fuzzy Sets Syst., 108, 2, 193-200 (1999) · Zbl 0947.45001 · doi:10.1016/S0165-0114(97)00331-X
[43] Ullah, S.; Farooq, M.; Ahmad, L., Efficient algorithm for solving fuzzy Abel singular integral equation using homotopy perturbation transform method, Bull. Malays. Math. Sci. Soc., 2, 1-18 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.