×

Generalized virtualization on welded links. (English) Zbl 1482.57008

In this paper, new operations which generalize virtualization are introduced. The operation of virtualization on a virtual or welded link diagram consists in replacing a classical crossing by a virtual one. This is equivalent, under Reidemeister moves, to taking two arcs which do not cross one another and adding a virtual crossing together with a classical crossing in the other direction.
The generalization introduced in this paper is to add additional classical twists instead of just a single classical crossing. In the version denoted by \(V(n)\), \(n\) classical half-twists are added after the virtual crossing. In the version denoted by \(V^n\), \(n\) classical half twists are added with a virtual crossing in between each of them.
It is a well-known result that any virtual diagram is equivalent to an unlink under virtualization. One of the main results in this paper involves an invariant \(\lambda_{ij}(L)\), with the property that:
Theorem 1. If \(n\) is even, then any welded link is equivalent to an unlink under \(V(n)\) operations. If \(n\) is odd, then two welded link diagrams are equivalent under \(V(n)\) operations if and only if they have the same \(\lambda_{ij}\) invariant modulo \(n\).
The paper also shows that
Theorem 2. \(V^n\) is not an unknotting operation for welded knots \(n\geq 2\).
The bulk of the proofs utilize the arrow calculus, which involves using arrows between arcs to indicate classical crossings. This is rather like the Gauss code presentation of a virtual link diagram, and it seems likely that these results might be obtained by using Gauss codes directly.
The bulk of this paper depends upon the arrow calculus. For more information on the arrow calculus, see [J.-B. Meilhan and A. Yasuhara, Algebr. Geom. Topol. 19, No. 1, 397–456 (2019; Zbl 1419.57019)].

MSC:

57K12 Generalized knots (virtual knots, welded knots, quandles, etc.)

Citations:

Zbl 1419.57019

References:

[1] H. Aida, Unknotting operations of polygonal type, Tokyo J. Math., 15 (1992), 111-121. · Zbl 0773.57003 · doi:10.3836/tjm/1270130254
[2] B. Audoux, P. Bellingeri, J.-B. Meilhan and E. Wagner, On usual, virtual and welded knotted objects up to homotopy, J. Math. Soc. Japan, 69 (2017), 1079-1097. · Zbl 1391.57004 · doi:10.2969/jmsj/06931079
[3] B. Audoux, P. Bellingeri, J.-B. Meilhan and E. Wagner, Extensions of some classical local moves on knot diagrams, Michigan Math. J., 67 (2018), 647-672. · Zbl 1406.57003 · doi:10.1307/mmj/1531447373
[4] R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Reprint of the 1963 original, Grad. Texts in Math., 57, Springer-Verlag, New York-Heidelberg, 1977. · Zbl 0362.55001
[5] R. Fenn, R. Rimányi and C. Rourke, The braid-permutation group, Topology, 36 (1997), 123-135. · Zbl 0861.57010 · doi:10.1016/0040-9383(95)00072-0
[6] R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Theory Ramifications, 1 (1992), 343-406. · Zbl 0787.57003 · doi:10.1142/S0218216592000203
[7] M. Goussarov, M. Polyak and O. Viro, Finite-type invariants of classical and virtual knots, Topology, 39 (2000), 1045-1068. · Zbl 1006.57005 · doi:10.1016/S0040-9383(99)00054-3
[8] J. Hoste, Y. Nakanishi and K. Taniyama, Unknotting operations involving trivial tangles, Osaka J. Math., 27 (1990), 555-566. · Zbl 0713.57006
[9] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra, 23 (1982), 37-65. · Zbl 0474.57003 · doi:10.1016/0022-4049(82)90077-9
[10] T. Kanenobu, Forbidden moves unknot a virtual knot, J. Knot Theory Ramifications, 10 (2001), 89-96. · Zbl 0997.57015 · doi:10.1142/S0218216501000731
[11] L. H. Kauffman, Virtual knot theory, European J. Combin., 20 (1999), 663-691. · Zbl 0938.57006 · doi:10.1006/eujc.1999.0314
[12] A. J. Kelly, Groups from link diagrams, Ph.D. Thesis, Univ. of Warwick (1990). Available at http://wrap.warwick.ac.uk/63616/.
[13] S. Kinoshita, On the distribution of Alexander polynomials of alternating knots and links, Proc. Amer. Math. Soc., 79 (1980), 644-648. · Zbl 0437.57002 · doi:10.1090/S0002-9939-1980-0572320-9
[14] J.-B. Meilhan and A. Yasuhara, Arrow calculus for welded and classical links, Algebr. Geom. Topol., 19 (2019), 397-456. · Zbl 1419.57019 · doi:10.2140/agt.2019.19.397
[15] K. Miyazaki and A. Yasuhara, Generalized #-unknotting operations, J. Math. Soc. Japan, 49 (1997), 107-123. · Zbl 0912.57002 · doi:10.2969/jmsj/04910107
[16] H. A. Miyazawa, K. Wada and A. Yasuhara, Link invariants derived from multiplexing of crossings, Algebr. Geom. Topol., 18 (2018), 2497-2507. · Zbl 1397.57013 · doi:10.2140/agt.2018.18.2497
[17] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann., 284 (1989), 75-89. · Zbl 0646.57005 · doi:10.1007/BF01443506
[18] H. Murakami, Some metrics on classical knots, Math. Ann., 270 (1985), 35-45. · Zbl 0535.57005 · doi:10.1007/BF01455526
[19] T. Nakamura, Y. Nakanishi, S. Satoh and A. Yasuhara, The pass move is an unknotting operation for welded knots, Topology Appl., 247 (2018), 9-19. · Zbl 1397.57014 · doi:10.1016/j.topol.2018.07.005
[20] T. Nasybullov, Classification of fused links, J. Knot Theory Ramifications, 25 (2016), 1650076, 21 pp. · Zbl 1383.57012 · doi:10.1142/S0218216516500760
[21] S. Nelson, Unknotting virtual knots with Gauss diagram forbidden moves, J. Knot Theory Ramifications, 10 (2001), 931-935. · Zbl 0997.57016 · doi:10.1142/S0218216501001244
[22] T. Okabayashi, Forbidden moves for virtual links, Kobe J. Math., 22 (2005), 49-63. · Zbl 1123.57008
[23] J. H. Przytycki, \(t_k\) moves on links, In: Braids, Santa Cruz, CA, 1986, Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988, 615-656. · Zbl 0665.57007
[24] J. H. Przytycki, On Slavik Jablan’s work on 4-moves, J. Knot Theory Ramifications, 25 (2016), 1641014, 26 pp. · Zbl 1353.57017
[25] S. Satoh, Crossing changes, Delta moves and sharp moves on welded knots, Rocky Mountain J. Math., 48 (2018), 967-979. · Zbl 1397.57018 · doi:10.1216/RMJ-2018-48-3-967
[26] M. · Zbl 0758.57008 · doi:10.1016/0040-9383(92)90029-H
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.